Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 2
484
Views
20
CrossRef citations to date
0
Altmetric
Articles

Catalyst-free UV365-assisted synthesis of pyran annulated heterocyclic scaffolds and evaluation of their antibacterial activities

, , , , &
Pages 263-278 | Received 18 Jul 2020, Published online: 29 Oct 2020

References

  • Panwar, N. L.; Kaushik, S. C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. DOI: 10.1016/j.rser.2010.11.037.
  • Chen, J.; Hu, X.; Lu, L.; Xiao, W. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Acc. Chem. Res. 2016, 49, 1911–1923. DOI: 10.1021/acs.accounts.6b00254.
  • Sahoo, M. K.; Marbaniang, M.; Sinha, B.; Naik, D. B.; Sharan, R. N. UVC Induced TOC Removal Studies of Ponceau S in the Presence of Oxidants: Evaluation of Electrical Energy Efficiency and Assessment of Biotoxicity of the Treated Solutions by Escherichia coli Colony Forming Unit Assay. Chem. Eng. J. 2012, 213, 142–149. DOI: 10.1016/j.cej.2012.10.002.
  • Gautam, A.; Kshirsagar, A.; Biswas, R.; Banerjee, S.; Khanna, P. K. Photodegradation of Organic Dyes Based on Anatase and Rutile TiO2 Nano-Particles. RSC Adv. 2016, 6, 2746–2759. DOI: 10.1039/C5RA20861K.
  • Jeong, J.; Sekiguchi, K.; Sakamoto, K. Photochemical and Photocatalytic Degradation of Gaseous Toluene Using Short-Wavelength UV Irradiation with TiO2 Catalyst: comparison of Three UV Sources. Chemosphere. 2004, 57, 663–671. DOI: 10.1016/j.chemosphere.2004.05.037.
  • Egerton, T. A. UV-Absorption-The Primary Process in Photocatalysis and Some Practical Consequences. Molecules. 2014, 19, 18192–18214. DOI: 10.3390/molecules191118192.
  • Ghasemi, B.; Anvaripour, B.; Jorfi, S.; Jaafarzadeh, N. Enhanced Photocatalytic Degradation and Mineralization of Furfural Using UVC/TiO2/GAC Composite in Aqueous Solution. Int. J. Photoenergy. 2016, 2016, 1–10. DOI: 10.1155/2016/2782607.
  • Sahoo, M. K.; Sinha, B.; Sharan, R. N. UVC Based Advanced Oxidation for Decolourization and Mineralization of Calconcarboxylic Acid in Aqueous Solution: Eco‐Toxicological Effect of Post Treated Solutions and Its Remedy. Can. J. Chem. Eng. 2014, 92, 1693–1699. DOI: 10.1002/cjce.22040.
  • Peternel, I. T.; Koprivanac, N.; Bozic, A. M. L.; Kusic, H. M. Comparative Study of UV/TiO2, UV/ZnO and Photo-Fenton Processes for the Organic Reactive Dye Degradation in Aqueous Solution. J. Hazard. Mater. 2007, 148, 477–484. DOI: 10.1016/j.jhazmat.2007.02.072.
  • Qiao, R. P.; Li, N.; Qi, X. H.; Wang, Q. S.; Zhuang, Y. Y. Degradation of Microcystin-RR by UV Radiation in the Presence of Hydrogen Peroxide. Toxicon. 2005, 45, 745–752. DOI: 10.1016/j.toxicon.2005.01.012.
  • Holz, K.; Lietard, J.; Somoza, M. M. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography. ACS Sustain. Chem. Eng. 2017, 5, 828. DOI: 10.1021/acssuschemeng.6b02175.
  • Chen, M. N.; Di, J. Q.; Li, J. M.; Mo, L. P.; Zhang, Z. H. Eosin Y-Catalyzed One-Pot Synthesis of Spiro[4H-Pyran-Oxindole] Under Visible Light Irradiation, Tetrahedron. 2020, 76, 131059. DOI: 10.1016/j.tet.2020.131059.
  • Zhang, M.; Fu, Q. Y.; Gao, G.; He, H. Y.; Zhang, Y.; Wu, Y. S.; Zhang, Z. H. Catalyst-Free, Visible-Light Promoted One-Pot Synthesis of Spirooxindole-Pyran Derivatives in Aqueous Ethyl Lactate. ACS Sustainable Chem. Eng. 2017, 5, 6175–6182. DOI: 10.1021/acssuschemeng.7b01102.
  • Zeitler, K. Photoredox Catalysis with Visible Light. Angew. Chem. Int. Ed. Engl. 2009, 48, 9785–9789. DOI: 10.1002/anie.200904056.
  • Teply, F. Photoredox Catalysis by [ru(Bpy)3]2+ to Trigger Transformations of Organic Molecules. Organic Synthesis Using Visible-Light Photocatalysis and Its 20th Century Roots. Collect. Czechoslov. Chem. Commun. 2011, 76, 859. DOI: 10.1135/cccc2011078.
  • Narayanam, J. M. R.; Stephenson, C. R. J. Visible Light Photoredox Catalysis: Applications in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 102–113. DOI: 10.1039/b913880n.
  • Tucker, J. W.; Stephenson, C. R. J. Shining Light on Photoredox Catalysis: Theory and Synthetic Applications. J. Org. Chem. 2012, 77, 1617–1622. DOI: 10.1021/jo202538x.
  • Xuan, J.; Xiao, W. J. Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. Engl. 2012, 51, 6828–6838. DOI: 10.1002/anie.201200223.
  • Byrne, C.; Subramanian, G.; Pillai, S. C. Recent Advances in Photocatalysis for Environmental Applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. DOI: 10.1016/j.jece.2017.07.080.
  • Esser, P.; Pohlmann, B.; Scharf, H. D. The Photochemical Synthesis of Fine Chemicals with Sunlight. Angew. Chem. Int. Ed. Engl. 1994, 33, 2009.
  • Nongthombam, G. S.; Kharmawlong, G. K.; Kumar, J. E.; Nongkhlaw, R. L. UV365 Light Promoted Catalyst-Free Synthesis of Pyrimido[4,5-b]Quinoline-2,4-Diones in Aqueous-Glycerol Medium. New J. Chem. 2018, 42, 9436–9442. DOI: 10.1039/C8NJ01459K.
  • El-Agrody, A. M.; Fouda, A. M.; Al-Dies, A. M. Studies on the Synthesis, in Vitro Antitumor Activity of 4Hbenzo [h]Chromene,7H-Benzo[h]Chromene[2,3-d]Pyrimidine Derivatives and Structure–Activity Relationships of the 2-,3- and 2,3-Positions. Med. Chem. Res. 2014, 23, 3187–3199. DOI: 10.1007/s00044-013-0904-x.
  • Moreno-Manas, M.; Pleixats, R. Dehydroacetic Acid, Triacetic Acid Lactone, and Related Pyrones. Adv. Heterocycl. Chem. 1992, 53, 1. DOI: 10.1016/S0065-2725(08)60861-2.
  • Lee, J. S. Recent Advances in the Synthesis of 2-Pyrones. Mar. Drugs. 2015, 13, 1581–1620. DOI: 10.3390/md13031581.
  • Sankpal, S.; Choudhari, P.; Kumbhar, S.; Phalle, S.; Deshmukh, M. One-Pot Synthesis and Docking Study of Some Tetrahydrobenzo[b]Pyran Derivatives as Extended Spectrum Class Lactamase Inhibitors for Urinary Tract Infection. Thai J. Pharm. Sci. 2016, 40, 190.
  • Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G. K.; Jain, S. K.; Ntie-Kang, F. The Value of Pyrans as Anticancer Scaffolds in Medicinal Chemistry. RSC Adv. 2017, 7, 36977–36999. DOI: 10.1039/c7ra05441f.
  • Toledo, M. A.; Pedregal, C.; Lafuente, C.; Diaz, N.; Martinez-Grau, M. A.; Jimenez, A.; Benito, A.; Torrado, A.; Mateos, C.; Joshi, E. M.; et al. Discovery of a Novel Series of Orally Active Nociceptin/Orphanin FQ (NOP) Receptor Antagonists Based on a Dihydrospiro (Piperidine-4,7′-Thieno[2,3-c]Pyran) Scaffold. J. Med. Chem. 2014, 57, 3418–3429. DOI: 10.1021/jm500117r..
  • Macaev, F. Z.; Sucman, N. S.; Pogrebnoi, S. I.; Logina, L. P.; Barba, A. N. Initial Synthesis of Diastereomeric Pyran Spirooxoindolinones Based on (–)-Carvone and (+)-3-Carene. Chem. Nat. Compd. 2014, 50, 103–108. DOI: 10.1007/s10600-014-0877-0.
  • Zhang, Y. H.; Gu, P. Y.; Zhou, J. B.; Xu, Y. J.; Liu, W.; Gu, Q. F.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Lu, J. M. Preparation of 4-Dicyanomethylene-2,6-Distyryl-4H-Pyran Derivatives, Their Functional Polystyrenes and Study of Their Different Aggregation Induced Emission Behaviors. J. Mater. Chem. C. 2014, 2, 2082–2088. DOI: 10.1039/c3tc32244k.
  • Tekale, S. U.; Kauthale, S. S.; Jadhav, K. M.; Pawar, R. P. Nano-Zno Catalyzed Green and Efficient One-Pot Four-Component Synthesis of Pyranopyrazoles. J. Chem. 2013, 840954, 1. DOI: 10.1155/2013/840954.
  • Nazari, S.; Keshavarz, M. Amberlite-Supported L-Prolinate: A Novel Heterogeneous Organocatalyst for the Three-Component Synthesis of 4h-Pyrano[2,3-c]Pyrazole Derivatives. Russ. J. Gen. Chem. 2017, 87, 539–545. DOI: 10.1134/S1070363217030252.
  • Ye, N.; Chen, H.; Wold, E. A.; Shi, P. Y.; Zhou, J. Therapeutic Potential of Spirooxindoles as Antiviral Agents. ACS Infect. Dis. 2016, 2, 382–392. DOI: 10.1021/acsinfecdis.6b00041.
  • Maleki, A.; Azadegan, S. Preparation and Characterization of Silica Supported Magnetic Nanocatalyst and Application in the Synthesis of 2-Amino-4H-Chromene-3-Carbonitrile Derivatives. Inorg. Nano-Met. Chem. 2017, 47, 917–924. DOI: 10.1080/24701556.2016.1241266.
  • Zhang, G.; Zhang, Y.; Yan, J.; Chen, R.; Wang, S.; Ma, Y.; Wang, R. One-Pot Enantioselective Synthesis of Functionalized Pyranocoumarins and 2-Amino-4h-Chromenes: discovery of a Type of Potent Antibacterial Agent. J. Org. Chem. 2012, 77, 878–888. DOI: 10.1021/jo202020m.
  • Azarifar, D.; Nejat-Yami, R.; Sameri, F.; Akrami, Z. Ultrasonic-Promoted One-Pot Synthesis of 4H-Chromenes, Pyrano[2,3-d]Pyrimidines, and 4H-Pyrano[2,3-c]Pyrazoles. Loc. 2012, 9, 435–439. DOI: 10.2174/157017812801322435.
  • Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B. S.; Yadav, J. S. Cerium(III) Chloride–Catalyzed One-Pot Synthesis of Tetrahydrobenzo[b]Pyrans. Synth. Commun. 2009, 39, 433–442. DOI: 10.1080/00397910802378399.
  • Konakanchi, R.; Gondru, R.; Nishtala, V. B.; Kotha, L. R. NaF-Catalyzed Efficient One-Pot Synthesis of Dihydropyrano[2,3-c]Pyrazoles under Ultrasonic Irradiation via MCR Approach. Synth. Commun. 2018, 48, 1994–2001. DOI: 10.1080/00397911.2018.1479758.
  • Karimi-Jaberi, Z.; ReyazoShams, M. M. Trichloroacetic Acid as a Solid Heterogeneous Catalyst for the Rapid Synthesis of Dihydropyrano[2,3-c]Pyrazoles under Solvent-Free Conditions. Heterocycl. Commun. 2011, 17, 177. DOI: 10.1515/HC.2011.046.
  • Montazeri, N.; Noghani, T.; Ghorchibeigy, M.; Zoghi, R. Pentafluoropropionic Acid: An Efficient and Metal-Free Catalyst for the One-Pot Synthesis of Tetrahydrobenzo[b]Pyran Derivatives. J. Chem. 2014, 596171, 5. DOI: 10.1155/2014/596171.
  • Balalaie, S.; Bararjanian, M.; Sheikh‐Ahmadi, M.; Hekmat, S.; Salehi, P. Diammonium Hydrogen Phosphate: An Efficient and Versatile Catalyst for the One‐Pot Synthesis of Tetrahydrobenzo[b]Pyran Derivatives in Aqueous Media. Synth. Commun. 2007, 37, 1097–1108. DOI: 10.1080/00397910701196579.
  • Hekmatshoar, R.; Majedi, S.; Bakhtiari, K. Sodium Selenate Catalyzed Simple and Efficient Synthesis of Tetrahydro Benzo[b]Pyran Derivatives. Catal. Commun. 2008, 9, 307–310. DOI: 10.1016/j.catcom.2007.06.016.
  • Ziarani, G. M.; Abbasi, A.; Badiei, A.; Aslani, Z. An Efficient Synthesis of Tetrahydrobenzo[b]Pyran Derivatives Using Sulfonic Acid Functionalized Silica as an Efficient Catalyst. J. Chem. 2011, 8, 293–299. DOI: 10.1155/2011/367613.
  • Bihani, M.; Bora, P. P.; Bez, G. A Practical Catalyst-Free Synthesis of 6-Amino-4Alkyl/Aryl-3-Methyl-2,4-Dihydropyrano[2,3-c]Pyrazole-Carbonitrile in Aqueous Medium. J. Chem. 2013, 920719, 8. DOI: 10.1155/2013/920719.
  • Kamble, R. D.; Dawane, B. S.; Yemul, O. S.; Kale, A. B.; Patil, S. D. Bleaching Earth Clay (pH 12.5): a Green Catalyst for Rapid Synthesis of Pyranopyrazole Derivatives via a Tandem Three-Component Reaction. Res. Chem. Intermed. 2013, 39, 3859–3866. DOI: 10.1007/s11164-012-0887-0.
  • Nongrum, R.; Nongthombam, G. S.; Kharkongor, M.; Rani, J. W. S.; Rahman, N.; Kathing, C.; Myrboh, B.; Nongkhlaw, R. A Nano-Organo Catalyzed Route towards the Efficient Synthesis of Benzo[b]Pyran Derivatives under Ultrasonic Irradiation. RSC Adv. 2016, 6, 108384–108392. DOI: 10.1039/c6ra24108e.
  • Dandia, A.; Parewa, V.; Jain, A. K.; Rathore, K. S. Step-Economic, Efficient, ZnS Nanoparticle-Catalyzed Synthesis of Spirooxindole Derivatives in Aqueous Medium via Knoevenagel Condensation Followed by Michael Addition. Green Chem. 2011, 13, 2135. DOI: 10.1039/c1gc15244k.
  • Hojati, S. F.; Amiri, A.; Mohamadi, S.; MoeiniEghbali, N. Novel Organometallic Nanomagnetic Catalyst for Multicomponent Synthesis of Spiroindoline Derivatives. Res. Chem. Intermed. 2018, 44, 2275–2287. DOI: 10.1007/s11164-017-3228-5.
  • Zhang, M.; Chen, M. N.; Li, J. M.; Liu, N.; Zhang, Z. H. Visible-Light-Initiated One-Pot, Three-Component Synthesis of 2-Amino-4H-Pyran-3,5-Dicarbonitrile Derivatives. ACS Comb. Sci. 2019, 21, 685–691. DOI: 10.1021/acscombsci.9b00124.
  • Zhang, M.; Chen, M. N.; Zhang, Z. H. Visible Light-Initiated Catalyst-Free One-Pot, Multicomponent Construction of 5-Substituted Indole Chromeno[2,3-b]Pyridines. Adv. Synth. Catal. 2019, 361, 5182–5190. DOI: 10.1002/adsc.201900994.
  • Kathrotiya, H. G.; Patel, R. G.; Patel, M. P. Microwave-Assisted Multi-Component Synthesis of 3'-Indolyl Substituted Pyrano [2, 3-c] Pyrazoles and Their Antimicrobial Activity. J. Serb. Chem. Soc. 2012, 77, 983–991. DOI: 10.2298/JSC110805199K.
  • Sakhuja, R.; Panda, S. S.; Khanna, L.; Khurana, S.; Jain, S. C. Design and Synthesis of Spiro [Indole-Thiazolidine] Spiro [Indole-Pyrans] as Antimicrobial Agents. Bioorg. Med. Chem. Lett. 2011, 21, 5465–5469. DOI: 10.1016/j.bmcl.2011.06.121.
  • Makawana, J. A.; Mungra, D. C.; Patel, M. P.; Patel, R. G. Microwave Assisted Synthesis and Antimicrobial Evaluation of New Fused Pyran Derivatives Bearing 2-Morpholinoquinoline Nucleus. Bioorg. Med. Chem. Lett. 2011, 21, 6166–6169. DOI: 10.1016/j.bmcl.2011.07.123.
  • Paliwal, P. K.; Jetti, S. R.; Jain, S. Green Approach towards the Facile Synthesis of Dihydropyrano(c)Chromene and Pyrano[2,3-d]Pyrimidine Derivatives and Their Biological Evaluation. Med. Chem. Res. 2013, 22, 2984–2990. DOI: 10.1007/s00044-012-0288-3.
  • Parshad, M.; Verma, V.; Kumar, D. Iodine-Mediated Efficient Synthesis of Pyrano[2,3-c]Pyrazoles and Their Antimicrobial Activity. Monatsh. Chem. 2014, 145, 1857–1865. DOI: 10.1007/s00706-014-1250-5.
  • Sangani, C. B.; Mungra, D. C.; Patel, M. P.; Patel, R. G. Synthesis and in Vitro Antimicrobial Screening of New Pyrano[4,3-b]Pyrane Derivatives of 1H-Pyrazole. Chinese Chem. Lett. 2012, 23, 57–60. DOI: 10.1016/j.cclet.2011.09.012.
  • Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-Pyrans and 2-Amino-5-Oxo-5,6,7,8-Tetrahydro-4H-Chromenes. Eur. J. Med. Chem. 2009, 44, 3805–3809. DOI: 10.1016/j.ejmech.2009.04.017.
  • Nandakumar, A.; Thirumurugan, P.; Perumal, P. T.; Vembu, P.; Ponnuswamy, M. N.; Ramesh, P. One-Pot Multicomponent Synthesis and Anti-microbial Evaluation of 2'-(Indol-3-yl)-2-Oxospiro(Indoline-3,4'-Pyran) Derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 4252–4258. DOI: 10.1016/j.bmcl.2010.05.025.
  • Reddy, T. N.; Ravinder, M.; Bikshapathi, R.; Sujitha, P.; Kumar, C. G.; Rao, V. J. Design, Synthesis, and Biological Evaluation of 4-H Pyran Derivatives as Antimicrobial and Anticancer Agents. Med. Chem. Res. 2017, 26, 2832–2844. DOI: 10.1007/s00044-017-1982-y.
  • Vafajoo, Z.; Hazeri, N.; Maghsoodlou, M. T.; Veisi, H. Electro-Catalyzed Multicomponent Transformation of 3-Methyl-1-Phenyl-1H-Pyrazol-5(4H)-One to 1,4-Dihydropyrano[2,3-c]Pyrazole Derivatives in Green Medium. Chin. Chem. Lett. 2015, 26, 973–976. DOI: 10.1016/j.cclet.2015.04.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.