Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 7
331
Views
24
CrossRef citations to date
0
Altmetric
Articles

Camphor sulfonic acid catalyzed facile and general method for the synthesis of 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones), 3,3'-(arylmethylene)bis(2-hydroxynaphthalene-1,4-diones) and 3,3'-(2-oxoindoline-3,3-diyl)bis(2-hydroxynaphthalene-1,4-dione) derivatives at room temperature

, , & ORCID Icon
Pages 1045-1057 | Received 12 Oct 2020, Published online: 09 Dec 2020

References

  • Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins; Wiley: Chichester, New York, 1982.
  • Chohan, Z. H.; Shaikh, A. U.; Rauf, A.; Supuran, C. T. Antibacterial, Antifungal and Cytotoxic Properties of Novel N-Substituted Sulfonamides from 4-Hydroxycoumarin. J. Enz. Inhib. Med. Chem. 2006, 21, 741–748. DOI: 10.1080/14756360600810340.
  • Chiarino, D.; Grancini, G. C.; Frigeni, V.; Carenzi, A. Preparation and Formulation of 4-(3-coumarinyl)Thiazole Derivatives with Antiallergic, Antianaphylactic and Antiarthritic Activity. European Patent Application EP 284017, 1988.
  • Stern, P.; Dezelic, M.; Kosak, R. Analgesic & Antipyretic Effects of Vitamin K & Dicumarol with Special Reference to 4-Hydroxycoumarin. Naunyn. Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1957, 232, 356–359. DOI: 10.1007/BF00259919.
  • Luchini, A. C.; Rodrigues-Orsi, P.; Cestari, S. H.; Seito, L. N.; Witaicenis, A.; Pellizzon, C. H.; Stasi, L. C. D. Intestinal Anti-Inflammatory Activity Of Coumarin and 4-hydroxycoumarin in the Trinitrobenzenesulphonic Acid Model of Rat Colitis. Biol. Pharm. Bull. 2008, 31, 1343–1350. DOI: 10.1248/bpb.31.1343.
  • Kirkiacharian, B. S.; Clercq, E.; Kurkjian, R.; Pannecouque, C. New Synthesis and anti-HIV and Antiviral Properties of 3-Arylsulfonyl Derivatives of 4-Ydroxycoumarin and 4-Hydroxyquinolone. Pharm. Chem. J. 2008, 42, 265–270. DOI: 10.1007/s11094-008-0103-0.
  • Adami, E.; Marazzi-Uberti, E.; Turba, C. Experimental and Statistical Data on the Analgesic Action of 4-Hydroxycoumarin. Arch. Ital. Sci. Farmacol. 1959, 9, 61–69.
  • Shapiro, S.; Sherwin, B. Thromboembolization II. The Use of Dicumarol (3,3’-Methylenebis (4-Hydroxycoumarin) in Embolization. Report of Five Cases. N. Y. State J. Med. 1943, 43, 45–52.
  • Velasco-Velàzquez, M. A.; Agramonte-Hevia, J.; Barrera, D.; Jiménez-Orozco, A.; García-Mondragón, M. J.; Mendoza-Patiño, N.; Landa, A.; Mandoki, J. 4-Hydroxycoumarin Disorganizes the Actin Cytoskeleton in B16–F10 Melanoma Cells but Not in B82 Fibroblasts, Decreasing Their Adhesion to Extracellular Matrix Proteins and Motility. Cancer Lett. 2003, 198, 179–186. DOI: 10.1016/S0304-3835(03)00333-1.
  • Butsch, W. L.; Stewart, J. D. Administration of Dicoumarin Compound for Prophylaxis of Postoperative Thrombosis and Embolism. Arch. Surg. 1942, 45, 551–553. DOI: 10.1001/archsurg.1942.01220040047005.
  • Hintz, K. K.; Ren, J. Tetramethylpyrazine Elicits Disparate Responses in Cardiac Contraction and Intracellular Ca(2+) Transients in Isolated Adult Rat Ventricular Myocytes. Vascul. Pharmacol. 2003, 40, 213–217. DOI: 10.1016/j.vph.2003.08.002.
  • Jung, J. C.; Lee, J. H.; Oh, S.; Lee, J. G.; Park, O. S. Synthesis and Antitumor Activity of 4-Hydroxycoumarin Derivatives. Bioorg. Med. Chem. Lett. 2004, 14, 5527–5531. DOI: 10.1016/j.bmcl.2004.09.009.
  • Chohan, Z. H.; Shaikh, A. U.; Rauf, A.; Supuran, C. T. Antibacterial, Antifungal and Cytotoxic Properties of Novel N-Substituted Sulfonamides from 4-Hydroxycoumarin. J. Enzym. Inhib. Med. Chem. 2006, 21, 741–748. DOI: 10.1080/14756360600810340.
  • Chen, Y. L.; Wang, T. C.; Tzeng, C. C.; Chang, N. C. Geiparvarin Analogues: Synthesis and Anticancer Evaluation of α‐Methylidene‐γ‐Butyrolactone‐Bearing Coumarins. HCA. 1999, 82, 191–197. DOI: 10.1002/(SICI)1522-2675(19990210)82:2<191::AID-HLCA191>3.0.CO;2-P.
  • Zhao, H.; Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. R. Coumarin-Based Inhibitors of HIV Integrase. J. Med. Chem. 1997, 40, 242–249. DOI: 10.1021/jm960450v.
  • Manolov, I.; Maichle-Moessmer, C.; Danchev, N. Synthesis, Structure, Toxicological and Pharmacological Investigations of 4-Hydroxycoumarin Derivatives. Eur. J. Med. Chem. 2006, 41, 882–890. DOI: 10.1016/j.ejmech.2006.03.007.
  • Kancheva, V. D.; Boranova, P. V.; Nechev, J. T.; Manolov, I. I. Structure-Activity Relationships of New 4-Hydroxy Bis-Coumarins as Radical Scavengers and Chain-Breaking Antioxidants. Biochimie. 2010, 92, 1138–1146. DOI: 10.1016/j.biochi.2010.02.033.
  • Jung, J.-C.; Park, O.-S. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives. Molecules. 2009, 14, 4790–4803. DOI: 10.3390/molecules14114790.
  • Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. IJMS. 2020, 21, 4618. DOI: 10.3390/ijms21134618.
  • Hamdi, N.; Puerta, M. C.; Valerga, P. Synthesis, Structure, Antimicrobial and Antioxidant Investigations of Dicoumarol and Related Compounds. Eur. J. Med. Chem. 2008, 43, 2541–2548. DOI: 10.1016/j.ejmech.2008.03.038.
  • Khan, K. M.; Iqbal, S.; Lodhi, M. A.; Maharvi, G. M.; Ullah, Z.; Choudhary, M. I.; Rahman, A.-U.; Perveen, S. Biscoumarin: New Class of Urease Inhibitors; Economical Synthesis and Activity. Bioorg. Med. Chem. 2004, 12, 1963–1968. DOI: 10.1016/j.bmc.2004.01.010.
  • Mironov, A. A.; Colanzi, A.; Polishchuk, R. S.; Beznoussenko, G. V.; Mironov, A. A. Jr.; Fusella, A.; Di Tullio, G.; Silletta, M. G.; Corda, D.; De Matteis, M. A.; Luini, A. Dicumarol, an Inhibitor of ADP-Ribosylation of CtBP3/BARS, Fragments Golgi Non-Compact Tubular Zones and Inhibits intra-Golgi Transport. Eur. J. Cell Biol. 2004, 83, 263–279. DOI: 10.1078/0171-9335-00377.
  • Al-Amiery, A. A.; Al-Majedy, Y. K.; Kadhum, A. A. H.; Mohamad, A. B. Novel Macromolecules Derived from Coumarin: synthesis and Antioxidant Activity. Sci. Rep. 2015, 5, 11825. DOI: 10.1038/srep11825.
  • Li, B.-J.; Chiang, C.-C.; Hsu, L.-Y. QSAR Studies of 3,3’-(Substituted-Benzylidene)-Bis-4-Hydroxycoumarin, Potential HIV-1 Integrase Inhibitor. J. Chinese Chem. Soc. 2010, 57, 742–749. DOI: 10.1002/jccs.201000103.
  • Mustata, G. I.; Brigo, A.; Briggs, J. M. HIV-1 Integrase Pharmacophore Model Derived from Diverse Classes of inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 1447–1454. DOI: 10.1016/j.bmcl.2004.01.027.
  • Muratović, S.; Durić, K.; Veljović, E.; Osmanović, A.; Softić, D.; Završnik, D. Synthesis of Biscoumarin Derivatives as Antimicrobial Agents. Asian J. Pharm. Clin. Res. 2013, 6, 132–134.
  • Chhibber, M.; Kumar, G.; Parasuraman, P.; Ramya, T. N. C.; Surolia, N.; Surolia, A. Novel Diphenyl Ethers: Design, Docking Studies, Synthesis and Inhibition of Enoyl ACP Reductase of Plasmodium falciparum and Escherichia coli. Bioorg. Med. Chem. 2006, 14, 8086–8098. DOI: 10.1016/j.bmc.2006.07.034.
  • Chaudhary, G.; Goyal, S.; Poonia, P. Lawsonia Inermis Linnaeus: A Phytopharmacological Review. Int. J. Pharm. Sci. Drug Res. 2010, 2, 91–98.
  • Sadhukhan, P.; Saha, S.; Sinha, K.; Brahmachari, G.; Sil, P. C. Selective Pro-Apoptotic Activity of Novel 3,3'-(Aryl/Alkyl-Methylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives on Human Cancer Cells via the Induction Reactive Oxygen Species. PLOS One. 2016, 11, e0158694–22. DOI: 10.1371/journal.pone.0158694.
  • Mehrabi, H.; Abusaidi, H. Synthesis of Biscoumarin and 3,4-Dihydropyrano[c]Chromene Derivatives Catalysed by Sodium Dodecyl Sulfate (SDS) in Neat Water. JICS. 2010, 7, 890–894. DOI: 10.1007/BF03246084.
  • Karimian, R.; Piri, F.; Safari, A. A.; Davarpanah, S. J. One-Pot and Chemoselective Synthesis of Bis(4-Hydroxycoumarin) Derivatives Catalyzed by Nano Silica Chloride. J. Nanostruc. Chem. 2013, 3, 1–6.
  • Zhu, A.; Wang, M.; Li, L.; Wang, J. Tetramethylguanidium-Based Ionic Liquids as Efficient and Reusable Catalysts for the Synthesis of Biscoumarin at Room Temperature. RSC Adv. 2015, 5, 73974–73979. DOI: 10.1039/C5RA14247D.
  • Sedighi, M.; Montazeri, N. Synthesis of Biscoumarin Derivatives as Biological Compounds Using Cellulose Sulfonic Acid. Asb. 2015, 7, 89–95. DOI: 10.12988/asb.2015.41160.
  • Kargar-Dolatabadi, A.; Zare, A. A Rapid and Highly Effectual Protocol for the Synthesis of Bis-Coumarins Using triethylaminium-N-Sulfonic Acid Tetrachloroaluminate under Solvent-Free Conditions. Chem. Methodol. 2019, 3, 591–598.
  • Babaei, H.; Montazeri, N. Nano TiO2: An Efficient Catalyst for the Synthesis of Biscoumarin in Aqueous Medium. Orient. J. Chem. 2014, 30, 577–580. DOI: 10.13005/ojc/300223.
  • Boroujeni, K. P.; Ghasemi, P.; Rafienia, Z. Synthesis of Biscoumarin Derivatives Using Poly(4-Vinylpyridine)-Supported Dual Acidic Ionic Liquid as a Heterogeneous Catalyst. Monatsh Fur Chemie. 2014, 6, 1023–1026.
  • Chavan, O. S.; Jadhav, S. A.; Shioorkar, M. G.; Chavan, S. B.; Baseer, M. A. Mild and Efficient One Pot Synthesis of Bis(4-Hydroxy Coumarins) Derivatives Using EPZ-10 Catalyst at Room Temperature by Simple Grinding Technique. Chem. Sci. Rev. Lett. 2015, 4, 945–949.
  • Heravi, M. M.; Nahavandi, F.; Sadjadi, S.; Oskooie, H. A.; Bamoharram, F. F. Efficient Synthesis of Bis-Coumarins Using Silica-Supported Preyssler Nanoparticles. Synth. Commun. 2010, 4, 498–503.
  • Rezaei, R.; Moezzi, F.; Doroodmand, M. M. Propane-1,2,3-Triyl Tris(Hydrogen Sulfate): a Mild and Efficient Recyclable Catalyst for the Synthesis of Biscoumarin Derivatives in Water and Solvent-Free Conditions. Chin. Chem. Lett. 2014, 25, 183–186. DOI: 10.1016/j.cclet.2013.10.033.
  • Khurana, J. M.; Kumar, S. Tetrabutylammonium Bromide (TBAB): a Neutral and Efficient Catalyst for the Synthesis of Biscoumarin and 3,4-Dihydropyrano[c]Chromene Derivatives in Water and Solvent-Free Conditions. Tetrahedron Lett. 2009, 50, 4125–4127. DOI: 10.1016/j.tetlet.2009.04.125.
  • Khurana, J. M.; Kumar, S. Ionic Liquid: An Efficient and Recyclable Medium for the Synthesis of Octahydroquinazolinone and Biscoumarin Derivatives. Monatsh. Chem. 2010, 141, 561–564. DOI: 10.1007/s00706-010-0306-4.
  • Shamsaddini, A.; Sheikhhosseini, E. Synthesis of 3,3-Arylidene Bis(4-Hydroxycoumarin) Catalyzed by p-Dodecylbenzenesulfonic Acid (DBSA) in Aqueous Media and Microwave Irradiation. Int. J. Org. Chem. 2014, 4, 135–141. DOI: 10.4236/ijoc.2014.42015.
  • Montazeri, N.; Vahabi, V. Highly Efficient and Easy Synthesis of Biscoumarin Catalyzed by Pentafluoropropionic Acid (PFPA) as a New Catalyst in Aqueous Medium. Bulgarian Chem. Commun. 2015, 47, 136–139.
  • Safaei-Ghomi, J.; Eshteghal, F.; Ghasemzadeh, M. A. Solvent-Free Synthesis of Dihydropyrano[3,2-c]Chromene and Biscoumarin Derivatives Using Magnesium Oxide Nanoparticles as a Recyclable Catalyst. Acta Chim. Slov. 2014, 61, 703–708.
  • Brahmachari, G.; Begam, S. Ceric Ammonium Nitrate (CAN): an Efficient and Eco-Friendly Catalyst for One-Pot Synthesis of Diversely Functionalized Biscoumarins in Aqueous Medium under Ambient Conditions. ChemistrySelect. 2019, 4, 5415–5420. DOI: 10.1002/slct.201900961.
  • Khodabakhshi, S.; Baghernejad, M. Mohr’s Salt Hexahydrate: A Novel, Cheap and Powerful Reagent for Green Synthesis of Biscoumarins on Water. J. Chinese Chem. Soc. 2013, 60, 495–498. DOI: 10.1002/jccs.201200489.
  • Khodabakhshi, S.; Marahel, F.; Rashidi, A.; Abbasabadi, M. K. A Green Synthesis of Substituted Coumarins Using Nano Graphene Oxide as Recyclable Catalyst. J. Chinese Chem. Soc. 2015, 62, 389–392. DOI: 10.1002/jccs.201400349.
  • Li, W.; Wang, Y.; Wang, Z.; Dai, L.; Wang, Y. Novel SO3H-Functionalized Ionic Liquids Based on Benzimidazolium Cation: efficient and Recyclable Catalysts for One-Pot Synthesis of Biscoumarin Derivatives. Catal. Lett. 2011, 141, 1651–1658. DOI: 10.1007/s10562-011-0689-9.
  • Maleki, B. Green Synthesis of Bis-Coumarin and Dihydropyrano[3,2-c]Chromene Derivatives Catalyzed by o-Benzenedisulfonimide. Org. Prep. Proced. Int. 2016, 48, 303–318. DOI: 10.1080/00304948.2016.1165061.
  • Albadi, J.; Mansournezhad, A.; Salehnasab, S. Green Synthesis of Biscoumarin Derivatives Catalyzed by Recyclable CuO–CeO2 Nanocomposite Catalyst in Water. Res. Chem. Intermed. 2015, 41, 5713–5721. DOI: 10.1007/s11164-014-1695-5.]
  • Akhlaghinia, B.; Sanati, P.; Mohammadinezhad, A.; Zarei, Z. The Magnetic Nanostructured Natural Hydroxyapatite (HAP/Fe3O4 NPs): an Efficient, Green and Recyclable Nanocatalyst for the Synthesis of Biscoumarin Derivatives under Solvent-Free Conditions. Res. Chem. Intermed. 2019, 45, 3215–3235. DOI: 10.1007/s11164-019-03788-2.
  • Sadat-Jalali, M.; Manafi, M.; Homami, S. S.; Gorji, B.; Monzavi, A. Efficient Synthesis of Bis-(4-Hydroxycoumarin) Using Sulfanilic Acid as Recyclable Catalyst in Water. Rev. Roum. Chim. 2020, 65, 473–480. DOI: 10.33224/rrch.2020.65.5.07.
  • Brahmachari, G. Sulfamic Acid-Catalyzed One-Pot Room Temperature Synthesis of Biologically Relevant Bis-Lawsone Derivatives. ACS Sustainable Chem. Eng. 2015, 3, 2058–2066. DOI: 10.1021/acssuschemeng.5b00325.
  • Tisseh, Z. N.; Bazgir, A. An Efficient, Clean Synthesis of 3,3′-(Arylmethylene)Bis(2- Hydroxynaphthalene-1,4-Dione) Derivatives. Dyes Pigm. 2009, 83, 258–261. DOI: 10.1016/j.dyepig.2008.09.003.
  • Wang, H.; Wang, Z.; Wang, C.; Yang, F.; Zhang, H.; Yue, H.; Wang, L. Lipase Catalyzed Synthesis of 3,3′-(Arylmethylene)Bis(2-Hydroxynaphthalene-1,4-Dione). RSC Adv. 2014, 4, 35686–35689. DOI: 10.1039/C4RA06516F.
  • de Araújo, M. V.; de Souza, P. S. O.; de Queiroz, A. C.; da Matta, C. B. B.; Leite, A. B.; da Silva, A. E.; de França, J. A. A.; Silva, T. M. S.; Camara, C. A.; Alexandre-Moreira, M. S. Alexandre-Moreira, M. S. Synthesis, Leishmanicidal Activity and Theoretical Evaluations of a Series of Substituted Bis-2-Hydroxy-1,4-Naphthoquinones. Molecules. 2014, 19, 15180–15195. DOI: 10.3390/molecules190915180.
  • Banerjee, B. Recent Developments on Organo-Bicyclo-Bases Catalyzed Multi-Component Synthesis of Biologically Relevant Heterocycles. Curr. Org. Chem. 2018, 22, 208–233. DOI: 10.2174/1385272821666170703123129.
  • Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic Acid: An Efficient Brønsted Acid-Surfactant-Combined Catalyst to Carry out Diverse Organic Transformations in Aqueous Medium. ChemistrySelect. 2018, 3, 12918–12936. DOI: 10.1002/slct.201802824.
  • Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic Applications of Saccharin and Its Derivatives in Organic Synthesis. Curr. Org. Chem.. 2020, 23, 3191–3205. DOI: 10.2174/1385272823666191121144758.
  • Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): an Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Curr. Green Chem. 2018, 5, 150–167. DOI: 10.2174/2213346105666181001113413.
  • Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V. K.; Banerjee, B. Naturally Occurring Organic Acid-Catalyzed Facile Diastereoselective Synthesis of Biologically Active (E)-3-(Arylimino)Indolin-2-One Derivatives in Water at Room Temperature. Curr. Org. Chem. 2019, 23, 1778–1788. DOI: 10.2174/1385272822666190924182538.
  • Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Mandelic Acid Catalyzed One-Pot Three-Component Synthesis of α-Aminonitriles and α-Aminophosphonates under Solvent-Free Conditions at Room Temperature. Synth. Commun. 2020, 50, 1545–1560. DOI: 10.1080/00397911.2020.1745844.
  • Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V. K.; Banerjee, B. Mandelic Acid: An Efficient Organo-Catalyst for the Synthesis of 3-Substituted-3-Hydroxy-Indolin-2-Ones and Related Derivatives in Aqueous Ethanol at Room Temperature. Curr. Organocatal. 2021, 7, in press. DOI: 10.2174/2213337207999200713145440.
  • Singh, A.; Kaur, G.; Kaur, A.; Gupta, V. K.; Banerjee, B. A General Method for the Synthesis of 3,3-Bis(Indol-3-yl)Indolin-2-Ones, Bis(Indol-3-yl)(Aryl)Methanes and Tris(Indol-3-yl)Methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-Catalyst in Aqueous Ethanol at Room Temperature. Curr. Green Chem. 2020, 7, 128–140. DOI: 10.2174/2213346107666200228125715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.