Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 7
262
Views
18
CrossRef citations to date
0
Altmetric
Articles

Bis(benzofuran-enaminone) hybrid possessing piperazine linker: Versatile precursor for microwave assisted synthesis of bis(pyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidines)

ORCID Icon, , ORCID Icon &
Pages 1085-1099 | Received 13 Nov 2020, Published online: 19 Jan 2021

References

  • Salih, K. S.; Ayoub, M. T.; Saadeh, H. A.; Al-Masoudi, N. A.; Mubarak, M. S. Synthesis, Characterization, and Biological Activities of New Benzofuran Derivatives. Heterocycles 2007, 71, 1577–1588. DOI: 10.1002/chin.200743111..
  • Kirilmis, C.; Ahmedzade, M.; Servi, S.; Koca, M.; Kizirgil, A.; Kazaz, C. Synthesis and Antimicrobial Activity of Some Novel Derivatives of Benzofuran: Part 2. The Synthesis and Antimicrobial Activity of Some Novel 1-(1-Benzofuran-2-yl)-2-Mesitylethanone Derivatives. Eur. J. Med. Chem. 2008, 43, 300–308. DOI: 10.1016/j.ejmech.2007.03.023.
  • Koca, M.; Servi, S.; Kirilmis, C.; Ahmedzade, M.; Kazaz, C.; Özbek, B.; Ötük, G. Synthesis and Antimicrobial Activity of Some Novel Derivatives of Benzofuran: Part 1. Synthesis and Antimicrobial Activity of (Benzofuran-2-yl)(3-phenyl-3-methylcyclobutyl) Ketoxime Derivatives. Eur. J. Med. Chem. 2005, 40, 1351–1358. DOI: 10.1016/j.ejmech.2005.07.004.
  • Mekky, A. E. M.; Sanad, S. M. H. Novel Bis(pyrazole-benzofuran) Hybrids Possessing Piperazine Linker: Synthesis of Potent Bacterial Biofilm and MurB Inhibitors. Bioorg. Chem. 2020, 102, 104094. DOI: 10.1016/j.bioorg.2020.104094.
  • Reddy, K. I.; Srihari, K.; Renuka, J.; Sree, K. S.; Chuppala, A.; Jeankumar, V. U.; Sridevi, J. P.; Babu, K. S.; Yogeeswari, P.; Sriram, D. An Efficient Synthesis and Biological Screening of Benzofuran and Benzo[d]isothiazole Derivatives for Mycobacterium tuberculosis DNA GyrB Inhibition. Bioorg. Med. Chem. 2014, 22, 6552–6563. DOI: 10.1016/j.bmc.2014.10.016.
  • Renuka, J.; Reddy, K. I.; Srihari, K.; Jeankumar, V. U.; Shravan, M.; Sridevi, J. P.; Yogeeswari, P.; Babu, K. S.; Sriram, D. Design, Synthesis, Biological Evaluation of Substituted Benzofurans as DNA gyraseB Inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. 2014, 22, 4924–4934. DOI: 10.1016/j.bmc.2014.06.041.
  • Krawiecka, M.; Kuran, B.; Kossakowski, J.; Cieslak, M.; Kazmierczak-Baranska, J.; Krolewska, K.; Nawrot, B. Synthesis and Cytotoxic Properties of Halogen and Aryl-/Heteroarylpiperazinyl Derivatives of Benzofurans. Anticancer Agents Med. Chem. 2015, 15, 115–121. DOI: 10.2174/187152061501141204124709.
  • Abdelhafez, O. M.; Ali, H. I.; Amin, K. M.; Abdalla, M. M.; Ahmed, E. Y. Design, Synthesis and Anticancer Activity of Furochromone and Benzofuran Derivatives Targeting VEGFR-2 Tyrosine Kinase. RSC Adv. 2015, 5, 25312–25324. DOI: 10.1039/C4RA16228E.
  • Gao, H.; Zhang, X.; Pu, X. J.; Zheng, X.; Liu, B.; Rao, G. X.; Wan, C. P.; Mao, Z. W. 2-Benzoylbenzofuran Derivatives Possessing Piperazine Linker as Anticancer Agents. Bioorg. Med. Chem. Lett. 2019, 29, 806–810. DOI: 10.1016/j.bmcl.2019.01.025.
  • Mao, Z. W.; Zheng, X.; Lin, Y. P.; Hu, C. Y.; Wang, X. L.; Wan, C. P.; Rao, G. X. Design, Synthesis and Anticancer Activity of Novel Hybrid Compounds between Benzofuran and N-Aryl Piperazine. Bioorg. Med. Chem. Lett. 2016, 26, 3421–3424. DOI: 10.1016/j.bmcl.2016.06.055.
  • Ma, Y.; Zheng, X.; Gao, H.; Wan, C.; Rao, G.; Mao, Z. Design, Synthesis, and Biological Evaluation of Novel Benzofuran Derivatives Bearing N-Aryl Piperazine Moiety. Molecules 2016, 21, 1684–1694. DOI: 10.3390/molecules21121684.
  • Maddila, S.; Gorle, S.; Seshadri, N.; Lavanya, P.; Jonnalagadda, S. B. Synthesis, Antibacterial and Antifungal Activity of Novel Benzothiazole Pyrimidine Derivatives. Arab. J. Chem. 2016, 9, 681–687. DOI: 10.1016/j.arabjc.2013.04.003.
  • Chen, P. J.; Yang, A.; Gu, Y. F.; Zhang, X. S.; Shao, K. P.; Xue, D. Q.; He, P.; Jiang, T. F.; Zhang, Q. R.; Liu, H. M. Synthesis, In Vitro Antimicrobial and Cytotoxic Activities of Novel Pyrimidine-Benzimidazol Combinations. Bioorg. Med. Chem. Lett. 2014, 24, 2741–2743. DOI: 10.1016/j.bmcl.2014.04.037.
  • Hilmy, K. M. H.; Khalifa, M. M.; Hawata, M. A. A.; Keshk, R. M. A.; El-Torgman, A. A. Synthesis of New Pyrrolo[2,3-d]pyrimidine Derivatives as Antibacterial and Antifungal Agents. Eur. J. Med. Chem. 2010, 45, 5243–5250. DOI: 10.1016/j.ejmech.2010.08.043.
  • Meneghesso, S.; Vanderlinden, E.; Stevaert, A.; McGuigan, C.; Balzarini, J.; Naesens, L. Synthesis and Biological Evaluation of Pyrimidine Nucleoside Monophosphate Prodrugs Targeted against Influenza Virus. Antiviral Res. 2012, 94, 35–43. DOI: 10.1016/j.antiviral.2012.01.007.
  • Maurya, S. S.; Khan, S. I.; Bahuguna, A.; Kumar, D.; Rawat, D. S. Synthesis, Antimalarial Activity, Heme Binding and Docking Studies of N-Substituted 4-Aminoquinoline-Pyrimidine Molecular Hybrids. Eur. J. Med. Chem. 2017, 129, 175–185. DOI: 10.1016/j.ejmech.2017.02.024.
  • Kumar, D.; Khan, S. I.; Tekwani, B. L.; Ponnan, P.; Rawat, D. S. 4-Aminoquinoline-Pyrimidine Hybrids: Synthesis, Antimalarial Activity, Heme Binding and Docking Studies. Eur. J. Med. Chem. 2015, 89, 490–502. DOI: 10.1016/j.ejmech.2014.10.061.
  • Pretorius, S. I.; Breytenbach, W. J.; de Kock, C.; Smith, P. J.; N'Da, D. D. Synthesis, Characterization and Antimalarial Activity of Quinoline-Pyrimidine Hybrids. Bioorg. Med. Chem. 2013, 21, 269–277. DOI: 10.1016/j.bmc.2012.10.019.
  • Bhalgat, C. M.; Ali, M. I.; Ramesh, B.; Ramu, G. Novel Pyrimidine and Its Triazole Fused Derivatives: Synthesis and Investigation of Antioxidant and Anti-Inflammatory Activity. Arab. J. Chem. 2014, 7, 986–993. DOI: 10.1016/j.arabjc.2010.12.021.
  • Huang, Y. Y.; Wang, L. Y.; Chang, C. H.; Kuo, Y. H.; Kaneko, K.; Takayama, H.; Kimura, M.; Juang, S. H.; Wong, F. F. One-Pot Synthesis and Antiproliferative Evaluation of Pyrazolo[3,4-d]pyrimidine Derivatives. Tetrahedron 2012, 68, 9658–9664. DOI: 10.1016/j.tet.2012.09.054.
  • El-Sayed, N. S.; El-Bendary, E. R.; El-Ashry, S. M.; El-Kerdawy, M. M. Synthesis and Antitumor Activity of New Sulfonamide Derivatives of Thiadiazolo[3,2-a]pyrimidines. Eur. J. Med. Chem. 2011, 46, 3714–3720. DOI: 10.1016/j.ejmech.2011.05.037.
  • Kurumurthy, C.; Sambasiva Rao, P.; Veera Swamy, B.; Santhosh Kumar, G.; Shanthan Rao, P.; Narsaiah, B.; Velatooru, L. R.; Pamanji, R.; Venkateswara Rao, J. Synthesis of Novel Alkyltriazole Tagged Pyrido[2,3-d]pyrimidine Derivatives and Their Anticancer Activity. Eur. J. Med. Chem. 2011, 46, 3462–3468. DOI: 10.1016/j.ejmech.2011.05.011.
  • Kong, W.; Zhou, Y.; Song, Q. Lewis-Acid Promoted Chemo Selective Condensation of 2-Aminobenzimidazoles or 3-Aminoindazoles with 3-Ethoxycyclobutanones to Construct Fused Nitrogen Heterocycles. Adv. Synth. Catal. 2018, 360, 1943–1948. DOI: 10.1002/adsc.201701641.
  • Kato, J.; Ito, Y.; Ijuin, R.; Aoyama, H.; Yokomatsu, T. Novel Strategy for Synthesis of Substituted Benzimidazo[1,2-a]quinolines. Org. Lett. 2013, 15, 3794–3797. DOI: 10.1021/ol4017723.
  • Al-Adiwish, W. M.; Tahir, M. I. M.; Siti-Noor-Adnalizawati, A.; Hashim, S. F.; Ibrahim, N.; Yaacob, W. A. Synthesis, Antibacterial Activity and Cytotoxicity of New Fused Pyrazolo[1,5-a]pyrimidine and Pyrazolo[5,1-c][1,2,4]triazine Derivatives from New 5-Aminopyrazoles. Eur. J. Med. Chem. 2013, 64, 464–476. DOI: 10.1016/j.ejmech.2013.04.029.
  • El-Gaby, M. S. A.; Atalla, A. A.; Gaber, A. M.; Abd Al-Wahab, K. A. Studies on Aminopyrazoles: Antibacterial Activity of Some Novel Pyrazolo[1,5-a]pyrimidines Containing Sulfonamido Moieties. Farmaco 2000, 55, 596–602. DOI: 10.1016/S0014-827X(00)00079-3.
  • Shaaban, M. R.; Saleh, T. S.; Mayhoub, A. S.; Mansour, A.; Farag, A. M. Synthesis and Analgesic/Anti-Inflammatory Evaluation of Fused Heterocyclic Ring Systems Incorporating Phenylsulfonyl Moiety. Bioorg. Med. Chem. 2008, 16, 6344–6352. DOI: 10.1016/j.bmc.2008.05.011.
  • Weitzel, K. W.; Wickman, J. M.; Augustin, S. G.; Strom, J. G. Zaleplon: A Pyrazolopyrimidine Sedative-Hypnotic Agent for the Treatment of Insomnia. Clin. Therap. 2000, 22, 1254–1267. DOI: 10.1016/S0149-2918(00)83024-6.
  • Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Besnard, F.; Costa, B.; Montali, M.; et al. A Novel Selective GABA(A) Alpha1 Receptor Agonist Displaying Sedative and Anxiolytic-Like Properties in Rodents. J. Med. Chem. 2005, 48, 6756–6760. DOI: 10.1021/jm058002n.
  • Azeredo, L. F. S. P.; Coutinho, J. P.; Jabor, V. A. P.; Feliciano, P. R.; Nonato, M. C.; Kaiser, C. R.; Menezes, C. M. S.; Hammes, A. S. O.; Caffarena, E. R.; Hoelz, L. V. B.; et al. Evaluation of 7-Arylaminopyrazolo[1,5-a]pyrimidines as Anti-Plasmodium falciparum, Antimalarial, and Pf-Dihydroorotate Dehydrogenase Inhibitors. Eur. J. Med. Chem. 2017, 126, 72–83. DOI: 10.1016/j.ejmech.2016.09.073.
  • Karthikeyan, C.; Malla, R.; Ashby, C. R.; Amawi, H.; Abbott, K. L.; Moore, J.; Chen, J.; Balch, C.; Lee, C.; Flannery, P. C.; et al. Pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolines: Novel Compounds That Reverse ABCG2-Mediated Resistance in Cancer Cells. Cancer Lett. 2016, 376, 118–126. DOI: 10.1016/j.canlet.2016.03.030.
  • Karthikeyan, C.; Lee, C.; Moore, J.; Mittal, R.; Suswam, E. A.; Abbott, K. L.; Pondugula, S. R.; Manne, U.; Narayanan, N. K.; Trivedi, P.; Tiwari, A. K. IND-2, a Pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline Derivative, Circumvents Multi-Drug Resistance and Causes Apoptosis in Colon Cancer Cells. Bioorg. Med. Chem. 2015, 23, 602–611. DOI: 10.1016/j.bmc.2014.11.043.
  • Kamal, A.; Tamboli, J. R.; Nayak, V. L.; Adil, S. F.; Vishnuvardhan, M. V. P. S.; Ramakrishna, S. Synthesis of Pyrazolo[1,5-a]pyrimidine Linked Aminobenzothiazole Conjugates as Potential Anticancer Agents. Bioorg. Med. Chem. Lett. 2013, 23, 3208–3215. DOI: 10.1016/j.bmcl.2013.03.129.
  • Ahmed, O. M.; Mohamed, M. A.; Ahmed, R. R.; Ahmed, S. A. Synthesis and Anti-Tumor Activities of Some New Pyridines and Pyrazolo[1,5-a]pyrimidines. Eur. J. Med. Chem. 2009, 44, 3519–3523. DOI: 10.1016/j.ejmech.2009.03.042.
  • Sharma, L. K.; Leonardi, R.; Lin, W.; Boyd, V. A.; Goktug, A.; Shelat, A. A.; Chen, T.; Jackowski, S.; Rock, C. O. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases. J. Med. Chem. 2015, 58, 1563–1568. DOI: 10.1021/jm501585q.
  • Phillipson, L. J.; Segal, D. H.; Nero, T. L.; Parker, M. W.; Wan, S. S.; de Silva, M.; Guthridge, M. A.; Wei, A. H.; Burns, C. J. Discovery and SAR of Novel Pyrazolo[1,5-a]pyrimidines as Inhibitors of CDK9. Bioorg. Med. Chem. 2015, 23, 6280–6296. DOI: 10.1016/j.bmc.2015.08.035.
  • Martin, M. P.; Olesen, S. H.; Georg, G. I.; Schönbrunn, E. Cyclin-Dependent Kinase Inhibitor Dinaciclib Interacts with the Acetyl-Lysine Recognition Site of Bromodomains. ACS Chem. Biol. 2013, 8, 2360–2365. DOI: 10.1021/cb4003283.
  • Alberti, M. J.; Auten, E. P.; Lackey, K. E.; McDonald, O. B.; Wood, E. R.; Preugschat, F.; Cutler, G. J.; Kane-Carson, L.; Liu, W.; Jung, D. K. Discovery and In Vitro Evaluation of Potent Kinase Inhibitors: Pyrido[1′,2′:1,5]pyrazolo[3,4-d]pyrimidines. Bioorg. Med. Chem. Lett. 2005, 15, 3778–3781. DOI: 10.1016/j.bmcl.2005.05.100.
  • Fraley, M. E.; Hoffman, W. F.; Rubino, R. S.; Hungate, R. W.; Tebben, A. J.; Rutledge, R. Z.; McFall, R. C.; Huckle, W. R.; Kendall, R. L.; Coll, K. E.; Thomas, K. A. Synthesis and Initial SAR Studies of 3,6-Disubstituted Pyrazolo[1,5-a]pyrimidines: A New Class of KDR Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 2767–2770. DOI: 10.1016/S0960-894X(02)00525-5.
  • Krishnammagari, S. K.; Cho, B. G.; Kim, J. T.; Jeong, Y. T. An Efficient and Solvent-Free One-Pot Multi-Component Synthesis of Novel Highly Substituted Pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine-3-Carbonitrile Derivatives Catalyzed by Tetramethylguanidine. Synth. Commun. 2018, 48, 2663–2674. DOI: 10.1080/00397911.2018.1514053.
  • Krishnammagari, S. K.; Jeong, Y. T. An Efficient and Transition Metal-Free Base-Promoted Multi-Component Synthesis of Aza-Fused Polysubstituted Pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine Derivatives. Polycycl. Aromat. Compd. 2020, 20, 1068–1083. DOI: 10.1080/10406638.2018.1526808.
  • Krishnammagari, S. K.; Jeong, Y. T. An Efficient and Green Synthesis of Novel Highly Functionalized Nitrogen-Fused Pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine Derivatives Using Recyclable Choline Hydroxide. Res. Chem. Intermed. 2018, 44, 7311–7329. DOI: 10.1007/s11164-018-3558-y.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Facile Synthesis and Characterization of Novel Pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4(3H)-One and Pyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidine Incorporating 1,3-Diarylpyrazole Moiety. Synth. Commun. 2018, 48, 1847–1856. doi: DOI: 10.1080/00397911.2018.1468911.
  • Charris-Molina, A.; Castillo, J. C.; Macías, M.; Portilla, J. One-Step Synthesis of Fully Functionalized Pyrazolo[3,4-b]pyridines via Isobenzofuranone Ring Opening. J. Org. Chem. 2017, 82, 12674–12681. DOI: 10.1021/acs.joc.7b02471.
  • Elsaman, T.; Fares, M.; Abdel-Aziz, H. A.; Attia, M. I.; Ghabbour, H. A.; Dawood, K. M. A Facile Synthesis of Pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine and Pyrido[2′,3′:3,4]pyrazolo [5,1-c][1,2,4] Triazine Bearing a Thiophene Moiety. J. Chem. 2013, 2013, 1–7. DOI: 10.1155/2013/463515.
  • Sanad, S. M. H.; Mekky, A. E. M. Efficient Synthesis and Characterization of Novel Bis(chromenes) and Bis(benzo[f]chromenes) Linked to Thiazole Units. Synth. Commun. 2020. DOI: 10.1080/00397911.2020.1846748.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis and Antibacterial Evaluation of Novel Mono- and Bis(2H-chromen-2-imine) Hybrids Linked to Heteroarene Units. Mendeleev Commun. 2020, 30, 762–764. DOI: 10.1016/j.mencom.2020.11.024.
  • Sanad, S. M. H.; Hanna, D. H.; Mekky, A. E. M. Regioselective Synthesis of Novel Antibacterial Pyrazole-Benzofuran Hybrids: 2D NMR Spectroscopy Studies and Molecular Docking. J. Mol. Struct. 2019, 1188, 214–226. DOI: 10.1016/j.molstruc.2019.03.088.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis of Novel Bis(chromenes) and Bis(chromeno[3,4-c]pyridine) Incorporating Piperazine Moiety. Synth. Commun. 2019, 49, 1385–1395. DOI: 10.1080/00397911.2019.1595658.
  • Hawass, M. A. E.; Sanad, S. M. H.; Ahmed, A. A. M.; Elneairy, M. A. A. Facile Synthesis and Characterization of Novel Bis(2-S-alkyl-pyridines) and Bis(3-aminothieno[2,3-b]pyridines) Incorporating 1,3-Diarylpyrazole Moiety. J. Sulfur Chem. 2018, 39, 388–401. DOI: 10.1080/17415993.2018.1435657.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Efficient Synthesis and Characterization of Novel Pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidines and Their Fused [1,2,4]triazole Derivatives. J. Heterocyclic Chem. 2018, 55, 2823–2833. DOI: 10.1002/jhet.3352.
  • Sayed, O. M.; Moustafa, H.; Mekky, A. E. M.; Farag, A. M.; Elwahy, A. H. M. Synthesis, Reactions and DFT Calculations of Novel Bis (Chalcones) Linked to a Thienothiophene Core through an Oxyphenyl Bridge. RSC Adv. 2016, 6, 10949–10961. ‏ DOI: 10.1039/C5RA27322F.
  • Sayed, O. M.; Mekky, A. E. M.; Farag, A. M.; Elwahy, A. H. M. 3,4‐Bis(bromomethyl) Thieno[2,3‐b]thiophene: Versatile Precursors for Novel Bis(triazolothiadiazines), Bis(quinoxalines), Bis(dihydrooxadiazoles), and Bis(dihydrothiadiazoles). J. Heterocyclic Chem. 2016, 53, 1113–1120. ‏DOI: 10.1002/jhet.2373.
  • Darweesh, A. F.; Mekky, A. E. M.; Salman, A. A.; Farag, A. M. Efficient, Microwave-Mediated Synthesis of Benzothiazole- and Benzimidazole-Based Heterocycles. Res. Chem. Intermed. 2016, 42, 4341–4358. ‏DOI: 10.1007/s11164-015-2279-8.
  • Al-Bogami, A. S.; Saleh, T. S.; Mekky, A. E. M.; Shaaban, M. R. Microwave Assisted Regioselective Synthesis and 2D-NMR Studies of Novel Azoles and Azoloazines Utilizing Fluorine-Containing Building Blocks. J. Mol. Struct. 2016, 1121, 167–179.‏ DOI: 10.1016/j.molstruc.2016.05.064.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Pyridine-2(1H)-Thiones: Versatile Precursors for Novel Pyrazolo[3,4-b]pyridine, Thieno[2,3-b]pyridines and Their Fused Azines. J. Heterocyclic Chem. 2018, 651–662. DOI: 10.1002/jhet.3444.
  • Saleh, T. S.; E. M. Mekky, A.; Al-Bogami, A. S. Convergent Synthesis Strategy of Novel Fused Azines: 1H-15N HMBC NMR as a Tool for Assertion of the Site Selectivity of Aza-Michael Addition Reaction. COS 2015, 13, 278–290. DOI: 10.2174/1570179412666150914201114.
  • Abdel‐Aziz, H. A.; Saleh, T. S.; El‐Zahabi, H. S. Facile Synthesis and in‐Vitro Antitumor Activity of Some Pyrazolo[3,4‐b]pyridines and Pyrazolo[1,5‐a]pyrimidines Linked to a Thiazolo[3,2‐a]benzimidazole Moiety. Arch. Pharm. 2010, 343, 24. DOI: 10.1002/ardp.200900082.
  • Hassan, A. S.; Masoud, D. M.; Sroor, F. M.; Askar, A. A. Synthesis and Biological Evaluation of Pyrazolo[1,5-a]pyrimidine-3-Carboxamide as Antimicrobial Agents. Med. Chem. Res. 2017, 26, 2909–2919. DOI: 10.1007/s00044-017-1990-y.
  • Kelada, M.; Walsh, J. M. D.; Devine, R. W.; McArdle, P.; Stephens, J. C. Synthesis of Pyrazolopyrimidinones Using a “One-Pot” Approach Under Microwave Irradiation. Beilstein J. Org. Chem. 2018, 14, 1222–1228. DOI: 10.3762/bjoc.14.104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.