Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 7
464
Views
24
CrossRef citations to date
0
Altmetric
Articles

Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature

, , , &
Pages 1100-1120 | Received 20 Nov 2020, Published online: 08 Jan 2021

References

  • Anjou, K.; Sydow, E. V. The Aroma of Cranberries. II. Vaccinium Macrocarpon Ait. Acta Chem Scand. 1967, 21, 2076–2082. DOI: 10.3891/acta.chem.scand.21-2076.
  • Bozec, L. A.; Moody, C.J. Naturally occurring nitrogen–sulfur compounds the benzothiazole alkaloids. Aust. J. Chem. 2009, 62, 639–647
  • Bitler, B.; McElroy, W. D. The Preparation and Properties of Crystal. Luciferin Arch. Biochem. Biophys. 1957, 72, 358–368. DOI: 10.1016/0003-9861(57)90212-6.
  • Baba, H.; Yaoita, Y.; Kikuchi, M. Sesquiterpenoids and Lactone Derivatives from Ligularia dentata. Helvetica. 2007, 90, 1028–1037. DOI: 10.1002/hlca.200790086.
  • Gunawardana, G. P.; Kohmoto, S.; Gunasekera, S. P.; McConnell, O. J.; Koehn, F. E. Dercitine, a New Biologically Active Acridine Alkaloid from a Deep Water Marine Sponge, Dercitus sp. J. Am. Chem. Soc. 1988, 110, 4856–4858. DOI: 10.1021/ja00222a071.
  • Gunawardana, G. P.; Kohmoto, S.; Burres, N. S. New Cytotoxic Acridine Alkaloids from Two Deep Water Marine Sponges of the Family Pachastrellidae. Tetrahedron Lett. 1989, 30, 4359–4362. DOI: 10.1016/S0040-4039(00)99360-2.
  • Cricchio, R.; Antonini, P.; Lancini, G. C.; Tamborini, G.; White, R. J.; Martinelli, E. Thiazo Rifamycins—I: Structure and Synthesis of Rifamycins p, q and Verde, Novel Metabolites from Mutants of Nocardia mediterranea. Tetrahedron 1980, 36, 1415–1421. DOI: 10.1016/0040-4020(80)85056-3.
  • Li, G.; Guo, J.; Wang, Z.; Liu, Y.; Song, H.; Wang, Q. Marine Natural Products for Drug Discovery: First Discovery of Kealiinines A-C and Their Derivatives as Novel Antiviral and Antiphytopathogenic Fungus Agents. J. Agric. Food Chem. 2018, 66, 7310–7318. DOI: 10.1021/acs.jafc.8b02238.
  • Wright, J. B. The Chemistry of the Benzimidazoles. Chem. Rev. 1951, 48, 397–541. DOI: 10.1021/cr60151a002.
  • Bansal, Y.; Silakari, O. The Therapeutic Journey of Benzimidazoles: A Review. Bioorg. Med. Chem. 2012, 20, 6208–6236. DOI: 10.1016/j.bmc.2012.09.013.
  • Keri, R. S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B. M. Comprehensive Review in Current Developments of Benzimidazole-Based Medicinal Chemistry. Chem. Biol. Drug Des. 2015, 86, 19–65. DOI: 10.1111/cbdd.12462.
  • Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological Significance of Heterocyclic 1H-Benzimidazole Scaffolds: A Review. BMC Chem. 2019, 13, 101. DOI: 10.1186/s13065-019-0625-4.
  • Lezcano, M.; Al-Soufi, W.; Novo, M.; Rodriguez-Nunez, E.; Tato, J. V. Complexation of Several Benzimidazole-Type Fungicides with Alpha- And Beta-Cyclodextrins. J. Agric. Food Chem. 2002, 50, 108–112. DOI: 10.1021/jf010927y.
  • Tawakkal, M. A.; Cran, M. J.; Bigger, S. W. Interaction and Quantification of Thymol in Active PLA-Based Materials Containing Natural Fibers. J. Appl. Polym. Sci. 2016, 133, 42160–42184.
  • Carcanague, D.; Shue, Y.-K.; Wuonola, M. A.; Uria-Nickelsen, M.; Joubran, C.; Abedi, J. K.; Jones, J.; Kühler, T. C. Novel Structures Derived from 2-[[(2-Pyridyl)Methyl]Thio]-1H-Benzimidazole as Anti-Helicobacter Pylori Agents, Part 2. J. Med. Chem. 2002, 45, 4300–4309. DOI: 10.1021/jm020868v.
  • Demirayak, S.; Karaburun, A. C.; Kayagil, I.; Ucucu, U.; Beis, R. Synthesis and Analgesic Activities of Some 2-(Benzazolylacetyl) Amino-3-Ethoxycarbonylthiophene Derivatives. Phosphorous Sulfur Silicon 2005, 180, 1841–1848. DOI: 10.1080/104265090889503.
  • Tageja, N.; Nagi, J. Bendamustine: something old, something new. Cancer Chemother. Pharmacol. 2010, 66, 413-423.
  • Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: A Medicinally Important Heterocyclic Moiety. Med. Chem. Res. 2012, 21, 269–283. DOI: 10.1007/s00044-010-9533-9.
  • Di Gioia, M. L.; Cassano, R.; Costanzo, P.; Herrera Cano, N.; Maiuolo, L.; Nardi, M.; Nicoletta, F. P.; Oliverio, M.; Procopio, A. Green Synthesis of Privileged Benzimidazole Scaffolds Using Active Deep Eutectic Solvent. Molecules 2019, 24, 2885–2896. DOI: 10.3390/molecules24162885.
  • Latif, L. A.; Surin, J. Relationships between the Anthelmintic Activity of Eight Derivatives of Benzimidazole Carbamates against Trichinellaspiralis and Their Chemical Structures. Jap. J. Med. Sci. Biol. 1993, 46, 203–214. DOI: 10.7883/yoken1952.46.203.
  • Starcevic, K.; Kralj, M.; Ester, K.; Sabol, I.; Grce, M.; Pavelic, K.; Karminski-Zamola, G. Synthesis, Antiviral and Antitumor Activity of 2-Substituted-5-Amidino-Benzimidazoles. Bioorg. Med. Chem. 2007, 15, 4419–4426. DOI: 10.1016/j.bmc.2007.04.032.
  • Kalyankar, T. M.; Pekamwar, S. S.; Wadher, S. J.; Tiprale, P. S.; Shinde, G. H. Review on Benzimidazole Derivative. Int. J. Chem. Pharm. Sci. 2012, 3, 1–8.
  • Abercrombie, J. J.; Leung, K. P.; Chai, H.; Hicks, R. P. Spectral and Biological Evaluation of a Synthetic Antimicrobial Peptide Derived from 1-Aminocyclohexane Carboxylic Acid. Bioorg. Med. Chem. 2015, 23, 1341–1347. DOI: 10.1016/j.bmc.2015.01.027.
  • Ayub, M.; Levell, M. J. Inhibition of Testicular 17 Alpha-Hydroxylase and 17,20-Lyase But Not 3 Beta-Hydroxysteroid Dehydrogenase-Isomerase or 17 Beta-Hydroxysteroid Oxidoreductase by Ketoconazole and Other Imidazole Drugs. J. Steroid Biochem. 1987, 28, 521–531. DOI: 10.1016/0022-4731(87)90511-5.
  • Kale, S. S.; Jedhe, G. S.; Meshram, S. N.; Santra, M. K.; Hamel, E.; Sanjayan, G. J. Novel Hybrid Nocodazole Analogues as Tubulin Polymerization Inhibitors and Their Antiproliferative Activity. Bioorg. Med. Chem. Lett. 2015, 25, 1982–1985. DOI: 10.1016/j.bmcl.2015.03.019.
  • Chen, K. T. J.; Gilabert-Oriol, R.; Bally, M. B.; Leung, A. W. Y. Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharm. Res. 2019, 36, 125. DOI: 10.1007/s11095-019-2654-z.
  • Yang, H.; Tang, P.; Tang, B.; Huang, Y.; Xiong, X.; Li, H. Novel Poly(ADP-Ribose) Polymerase Inhibitor Veliparib: Biophysical Studies on Its Binding to Calf Thymus DNA. RSC Adv. 2017, 7, 10242–10251. DOI: 10.1039/C6RA28213J.
  • Ly, L. H.; Zhao, X.-Y.; Holloway, L.; Feldman, D. Liarozole Acts Synergistically with 1alpha,25-Dihydroxyvitamin D3 to Inhibit Growth of DU 145 Human Prostate Cancer Cells by Blocking 24-Hydroxylase Activity. Endocrinology 1999, 140, 2071–2076. DOI: 10.1210/endo.140.5.6698.
  • Zhang, H.; Savage, S.; Schultz, A. R.; Bottomly, D.; White, L.; Segerdell, E.; Wilmot, B.; McWeeney, S. K.; Eide, C. A.; Nechiporuk, T.; et al. Clinical Resistance to Crenolanib in Acute Myeloid Leukemia Due to Diverse Molecular Mechanisms. Nature Commun. 2019, 10, 244. DOI: 10.1038/s41467-018-08263-x.
  • Mangla, B.; Kohli, K. Combination of Natural Agent with Synthetic Drug for the Breast Cancer Therapy. Int. J. Drug Dev. Res. 2018, 10, 22–26.
  • Garcia-Manero, G.; Abaza, Y.; Takahashi, K.; Medeiros, B. C.; Arellano, M.; Khaled, S. K.; Patnaik, M.; Odenike, O.; Sayar, H.; Tummala, M.; et al. Pracinostat plus Azacitidine in Older Patients with Newly Diagnosed Acute Myeloid Leukemia: Results of a Phase 2 Study. Blood Adv. 2019, 3, 508–518. DOI: 10.1182/bloodadvances.2018027409.
  • Ruiz, F.; Hazemann, I.; Mitschler, A.; Joachimiak, A.; Schneider, T.; Karplus, M.; Podjarny, A. The Crystallographic Structure of the Aldose Reductase ± IDD552 Complex Shows Direct Proton Donation from Tyrosine 48. Acta Cryst. 2004, D60, 1347–1354.
  • Gong, B.; Hong, F.; Kohm, C.; Bonham, L.; Klein, P. Synthesis and SAR of 2-Arylbenzoxazoles, Benzothiazoles And Benzimidazoles as Inhibitors of Lysophosphatidic Acid Acyltransferase-Beta. Bioorg. Med. Chem. Lett. 2004, 14, 1455–1459. DOI: 10.1016/j.bmcl.2004.01.023.
  • Klunk, W. E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D. P.; Bergstro, M.; Savitcheva, I.; Huang, G-f.; Estrada, S.; et al. Imaging Brain Amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004, 55, 306–319. DOI: 10.1002/ana.20009.
  • Auvity, S.; Tonietto, M.; Caillé, F.; Bodini, B.; Bottlaender, M.; Tournier, N.; Kuhnast, B.; Stankoff, B. Repurposing Radiotracers for Myelin Imaging: A Study Comparing 18F-Florbetaben, 18F-Florbetapir, 18F-Flutemetamol,11C-MeDAS, and 11C-PiB. Eur. J. Nucl. Med. Mol. Imaging. 2020, 47, 490–501. DOI: 10.1007/s00259-019-04516-z.
  • Tao, Z.-F.; Hasvold, L.; Wang, L.; Wang, X.; Petros, A. M.; Park, C. H.; Boghaert, E. R.; Catron, N. D.; Chen, J.; Colman, P. M.; et al. Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity. ACS Med. Chem. Lett. 2014, 5, 1088–1093. DOI: 10.1021/ml5001867.
  • IIScheetz, M. E.; Carlson, D. G.; Schinitsky, M. R. Frentizole, a Novel Immunosuppressive, and Azathioprine: Their Comparative Effects on Host Resistance to Pseudomonas aeruginosa, Candida albicans, Herpes Simplex Virus, and Influenza (Ann Arbor) Virus. Infect. Immun. 1977, 15, 145–148. DOI: 10.1128/IAI.15.1.145-148.1977.
  • Hockly, E.; Tse, J.; Barker, A. L.; Moolman, D. L.; Beunard, J. L.; Revington, A. P.; Holt, K.; Sunshine, S.; Moffitt, H.; Sathasivam, K.; et al. Evaluation of the Benzothiazole Aggregation Inhibitors Riluzole and PGL-135 as Therapeutics for Huntington’s Disease. Neurobiol. Dis. 2006, 21, 228–236. DOI: 10.1016/j.nbd.2005.07.007.
  • Bryson, H. M.; Fulton, B.; Benfield, P. Riluzole. A Review of Its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Potential in Amyotrophic Lateral Sclerosis. Drugs 1996, 52, 549–563. DOI: 10.2165/00003495-199652040-00010.
  • Heusden, J. V.; Ginckel, R. V.; Bruwiere, H.; Moelans, P.; Janssen, B.; Floren, W.; der Leede, B. J. V.; Dun, J. V.; Sanz, G.; Venet, M.; et al. Inhibition of all-TRANS-Retinoic Acid Metabolism by R116010 Induces Antitumour Activity. Br. J. Cancer 2002, 86, 605–611. DOI: 10.1038/sj.bjc.6600056.
  • Jordan, A. D.; Luo, C.; Reitz, A. B. Efficient Conversion of Substituted Aryl Thioureas to 2-Aminobenzothiazoles Using Benzyltrimethylammonium Tribromide. J. Org. Chem. 2003, 68, 8693–8696. DOI: 10.1021/jo0349431.
  • Saini, S.; Dhiman, N.; Mittal, A.; Kumar, G. Synthesis and Antioxidant Activity of the 2-Methyl Benzimidazole. J. Drug Deliv. Therap. 2016, 6, 100–102.
  • Nannapaneni, D. T.; Gupta, A. V. S. S. S.; Reddy, M. I.; Sarva, R. C. Synthesis, Characterization, and Biological Evaluation of Benzimidazole Derivatives as Potential Anxiolytics. J. Young Pharm. 2010, 2, 273–279. DOI: 10.4103/0975-1483.66809.
  • Sawant, R.; Kawade, D. Synthesis and Biological Evaluation of Some Novel 2-Phenyl Benzimidazole-1-Acetamide Derivatives as Potential Anthelmintic Agents. Acta Pharm. 2011, 61, 353–361. DOI: 10.2478/v10007-011-0029-z.
  • Coban, G.; Zencir, S.; Zupko, I.; Rethy, B.; Gunes, H. S.; Topcu, Z. Synthesis and Biological Activity Evaluation of 1H-Benzimidazoles via Mammalian DNA Topoisomerase I and Cytostaticity Assays. Eur. J. Med. Chem. 2009, 44, 2280–2285. DOI: 10.1016/j.ejmech.2008.06.018.
  • Azam, M.; Khan, A. A.; Resayes, S. I. A.; Islam, M. S.; Saxena, A. K.; Dwivedi, S.; Musarrat, J.; Kruszynska, A. T.; Kruszynski, R. Synthesis and Characterization of 2-Substituted Benzimidazoles and Their Evaluation as Anticancer Agent. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 142, 286–291. DOI: 10.1016/j.saa.2015.01.106.
  • Hranjec, M.; Pavlovic, G.; Marjanovic, M.; Kralj, M.; Zamola, G. K. Benzimidazole Derivatives Related to 2,3-Acrylonitriles, Benzimidazo[1,2-a] Quinolines and Fluorenes: Synthesis, Antitumor Evaluation in Vitro and Crystal Structure Determination. Eur. J. Med. Chem. 2010, 45, 2405–2417. DOI: 10.1016/j.ejmech.2010.02.022.
  • Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and Evaluation of Benzimidazole Carbamates Bearing Indole Moieties for Antiproliferative and Antitubulin Activities. Eur. J. Med. Chem. 2014, 87, 306–315. DOI: 10.1016/j.ejmech.2014.09.071.
  • Hranjec, M.; Starcevic, K.; Pavelic, S. K.; Lucin, P.; Pavelic, K.; Zamola, G. K. Synthesis, Spectroscopic Characterization and Antiproliferative Evaluation in Vitro of Novel Schiff Bases Related to Benzimidazoles. Eur. J. Med. Chem. 2011, 46, 2274–2279. DOI: 10.1016/j.ejmech.2011.03.008.
  • Galal, S. A.; Hegab, K. H.; Hashem, A. M.; Youssef, N. S. Synthesis and Antitumor Activity of Novel Benzimidazole-5-Carboxylic Acid Derivatives and Their Transition Metal Complexes as Topoisomerease II Inhibitors. Eur. J. Med. Chem. 2010, 45, 5685–5691. DOI: 10.1016/j.ejmech.2010.09.023.
  • Gao, C.; Li, B.; Zhang, B.; Sun, Q.; Li, L.; Li, X.; Chen, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and Biological Evaluation of Benzimidazole Acridine Derivatives as Potential DNA-Binding and Apoptosis-Inducing Agents. Bioorg. Med. Chem. 2015, 23, 1800–1807. DOI: 10.1016/j.bmc.2015.02.036.
  • Husain, A.; Rashid, M.; Mishra, R.; Parveen, S.; Shin, D. S.; Kumar, D. Benzimidazole Bearing Oxadiazole and Triazolo-Thiadiazoles Nucleus: Design and Synthesis as Anticancer Agents. Bioorg. Med. Chem. Lett. 2012, 22, 5438–5444. DOI: 10.1016/j.bmcl.2012.07.038.
  • Gowda, N. R. T.; Kavitha, C. V.; Chiruvella, K. K.; Joy, O.; Rangappa, K. S.; Raghavan, S. C. Synthesis and Biological Evaluation of Novel 1-(4-Methoxyphenethyl)-1H-Benzimidazole-5-Carboxylic Acid Derivatives and Their Precursors as Antileukemic Agents. Bioorg. Med. Chem. Lett. 2009, 19, 4594–4600. DOI: 10.1016/j.bmcl.2009.06.103.
  • Abonia, R.; Cortes, E.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of Novel 1,2,5-Trisubstituted Benzimidazoles as Potential Antitumor Agents. Eur. J. Med. Chem. 2011, 46, 4062–4070. DOI: 10.1016/j.ejmech.2011.06.006.
  • Demirayak, S.; Mohsen, U. A.; Karaburun, A. C. Synthesis and Anticancer and anti-HIV Testing of Some Pyrazino[1,2-a]Benzimidazole Derivatives. Eur. J. Med. Chem. 2002, 37, 255–260. DOI: 10.1016/S0223-5234(01)01313-7.
  • Dettmann, S.; Szymanowitz, K.; Wellner, A.; Schiedel, A.; Muller, C. E.; Gust, R. 2-Phenyl-1-[4-(2-Piperidine-1-yl-Ethoxy)Benzyl]-1H-Benzimidazoles as Ligands for the Estrogen Receptor: Synthesis and Pharmacological Evaluation. Bioorg. Med. Chem. 2010, 18, 4905–4916. DOI: 10.1016/j.bmc.2010.06.016.
  • Husain, A.; Rashid, M.; Shaharyar, M.; Siddiqui, A. A.; Mishra, R. Benzimidazole Clubbed with Triazolo-Thiadiazoles and Triazolo-Thiadiazines: New Anticancer Agents. Eur. J. Med. Chem. 2013, 62, 785–798. DOI: 10.1016/j.ejmech.2012.07.011.
  • Rashid, M.; Husain, A.; Mishra, R. Synthesis of Benzimidazoles Bearing Oxadiazole Nucleus as Anticancer Agents. Eur. J. Med. Chem. 2012, 54, 855–866. DOI: 10.1016/j.ejmech.2012.04.027.
  • Sharma, A.; Luxami, V.; Paul, K. Purine-Benzimidazole Hybrids: Synthesis, Single Crystal Determination and In Vitro Evaluation of Antitumor Activities. Eur. J. Med. Chem. 2015, 93, 414–422. DOI: 10.1016/j.ejmech.2015.02.036.
  • Refaat, H. M. Synthesis and Anticancer Activity of Some Novel 2-Substituted Benzimidazole Derivatives. Eur. J. Med. Chem. 2010, 45, 2949–2956. DOI: 10.1016/j.ejmech.2010.03.022.
  • Wang, W.; Kong, D.; Cheng, H.; Tan, L.; Zhang, Z.; Zhuang, X.; Long, H.; Zhou, Y.; Xu, Y.; Yang, X.; Ding, K. New Benzimidazole-2-Urea Derivates as Tubulin Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 4250–4253. DOI: 10.1016/j.bmcl.2014.07.035.
  • Yadav, S.; Narasimhan, B.; Lim, S. M.; Ramasamy, K.; Vasudevan, M.; Shah, S. A. A.; Selvaraj, M. Synthesis, Characterization, Biological Evaluation and Molecular Docking Studies of 2-(1H-Benzo[d]Imidazol-2-Ylthio)N-(Substituted-4-Oxothiazolidin-3-yl) Acetamides. Chem. Cent. J. 2017, 11, 137. DOI: 10.1186/s13065-017-0361-6.
  • Onnis, V.; Demurtas, M.; Deplano, A.; Balboni, G.; Baldisserotto, A.; Manfredini, S.; Pacifico, S.; Liekens, S.; Balzarini, J. Design, Synthesis and Evaluation of Antiproliferative Activity of New Benzimidazolehydrazones. Molecules 2016, 21, 579–588. DOI: 10.3390/molecules21050579.
  • Reddy, T. S.; Kulhari, H.; Reddy, V. G.; Bansal, V.; Kamal, A.; Shukla, R. Design, Synthesis and Biological Evaluation of 1,3-Diphenyl-1H-Pyrazole Derivatives Containing Benzimidazole Skeleton as Potential Anticancer and Apoptosis Inducing Agents. Eur. J. Med. Chem. 2015, 101, 790–805. DOI: 10.1016/j.ejmech.2015.07.031.
  • Mohamed, L. W.; Taher, A. T.; Rady, G. S.; Ali, M. M.; Mahmoud, A. E. Synthesis and Biological Evaluation of Certain New Benzimidazole Derivatives as Cytotoxic Agents New Cytotoxic Benzimidazoles. Der. Pharma. Chemica. 2018, 10, 112–120.
  • Ranganatha, V. L.; Avin, B. R. V.; Thirusangu, P.; Prashanth, T.; Prabhakar, B. T.; Khanum, S. A. Synthesis, Angiopreventive Activity, and In Vivo Tumor Inhibition of Novel Benzophenone-Benzimidazole Analogs. Life Sci. 2013, 93, 904–911. DOI: 10.1016/j.lfs.2013.10.001.
  • Tewari, A. K.; Mishra, A. Synthesis and Antiviral Activities of N substituted-2-Substituted - Benzimidazole Derivatives. Indian J. Chem. 2006, 45B, 489–493.
  • Yadav, S.; Narasimhan, B.; Lim, S. M.; Ramasamy, K.; Vasudevan, M.; Shah, S. A. A.; Mathur, A. Synthesis and Evaluation of Antimicrobial, Antitubercular and Anticancer Activities of Benzimidazole Derivatives. Egypt J. Basic Appl. Sci. 2018, 5, 100–109.
  • Choudhary, S.; Kini, S. G.; Mubeen, M. Antioxidant Activity of Novel Coumarin Substituted Benzothiazole Derivatives. Der. Pharma. Chemica. 2013, 5, 213–222.
  • Bhat, M.; Belagali, S. L.; Hemanth Kumar, N. K.; Mahadeva Kumar, S. Synthesis and Characterization of Novel Benzothiazole Amide Derivatives and Screening as Possible Antimitotic and Antimicrobial Agents. Res. Chem. Intermed. 2017, 43, 361–378. DOI: 10.1007/s11164-016-2627-3.
  • Wang, Y. T.; Qin, Y. J.; Yang, N.; Zhang, Y. L.; Liu, C. H.; Zhu, H. L. Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel 1-Benzene Acyl-2-(1-Methylindol-3-yl)-Benzimidazole Derivatives as Potential Tubulin Polymerization Inhibitors. Eur. J. Med. Chem. 2015, 99, 125–137. DOI: 10.1016/j.ejmech.2015.05.021.
  • Katla, R.; Chowrasia, R.; Manjari, P. S.; Domingues, N. An Efficient Aqueous Phase Synthesis of Benzimidazoles/Benzothiazoles in the Presence of β-Cyclodextrin. RSC Adv. 2015, 5, 41716–41720. DOI: 10.1039/C4RA16222F.
  • Guo, H. Y.; Li, J. C.; Shang, Y. L. A Simple and Efficient Synthesis of 2-Substituted Benzothiazoles Catalyzed by H2O2/HCl. Chin. Chem. Lett. 2009, 20, 1408–1410. DOI: 10.1016/j.cclet.2009.06.037.
  • Maleki, B.; Salehabadi, H. Ammonium Chloride as a Mild and Efficient Catalyst for the Synthesis of Some 2-Arylbenzothiazoles and Bisbenzothiazole Derivatives. Eur. J. Chem. 2010, 1, 377–380. DOI: 10.5155/eurjchem.1.4.377-380.165.
  • Ye, L-m.; Chen, J.; Mao, P.; Mao, Z-f.; Zhang, X-j.; Yan, M. Visible-Light-Promoted Synthesis of Benzothiazoles from 2-Aminothiophenols and Aldehydes. Tetrahedron Lett. 2017, 58, 874–876. DOI: 10.1016/j.tetlet.2017.01.053.
  • Merroun, Y.; Chehab, S.; Ghailane, T.; Akhazzane, M.; Souizi, A.; Ghailane, R. Preparation of Tin-Modified Mono-Ammonium Phosphate Fertilizer and Its Application as Heterogeneous Catalyst in the Benzimidazoles and Benzothiazoles Synthesis. Reac. Kinet. Mech. Cat. 2019, 126, 249–264. DOI: 10.1007/s11144-018-1446-5.
  • Bhat, R.; Karhale, S.; Arde, S.; Helavi, V. Acacia Concinna Pod Catalyzed Synthesis of 2-Arylbenzothia/(Oxa)Zole Derivatives. Iran. J. Catal. 2019, 9, 173–179.
  • Praveen, C.; Nandakumar, A.; Dheenkumar, P.; Muralidharan, D.; Perumal, P. Microwave-Assisted One-Pot Synthesis of Benzothiazole and Benzoxazole Libraries as Analgesic Agents. J. Chem. Sci. 2012, 124, 609–624. DOI: 10.1007/s12039-012-0251-3.
  • Moghaddam, F. M.; Bardajee, G. R.; Ismaili, H.; Taimoory, S. M. D. Facile and Efficient One-Pot Protocol for the Synthesis of Benzoxazole and Benzothiazole Derivatives Using Molecular Iodine as Catalyst. Synth. Commun. 2006, 36, 2543–2548. DOI: 10.1080/00397910600781448.
  • Bahrami, K.; Khodaei, M. M.; Naali, F. Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. J. Org. Chem. 2008, 73, 6835–6837. DOI: 10.1021/jo8010232.
  • Patil, S. S.; Bobade, V. D. Simple and Efficient One-Pot Synthesis of 2-Substituted Benzoxazole and Benzo Thiazole. Synth. Commun. 2009, 40, 206–212. DOI: 10.1080/00397910902906602.
  • Abdollahi-Alibeik, M.; Poorirani, S. Perchloric Acid– Doped Polyaniline as an Efficient and Reusable Catalyst for the Synthesis of 2-Substituted Benzothiazoles. Phosphorus, Sulfur Silicon Related Elements 2009, 184, 3182–3190. DOI: 10.1080/10426500802705453.
  • Sharma, H.; Singh, N.; Jang, D. O. A Ball-Milling Strategy for the Synthesis of Benzothiazole, Benzimidazole and Benzoxazole Derivatives under Solvent-Free Conditions. Green Chem. 2014, 16, 4922–4930. DOI: 10.1039/C4GC01142B.
  • Azizi, N.; Amiri, A. K.; Baghi, R.; Bolourtchian, M.; Hashemi, M. M. PTSA Catalyzed Simple and Green Synthesis of Benzothiazole Derivatives in Water. Monatsh. Chem. 2009, 140, 1471–1473. DOI: 10.1007/s00706-009-0209-4.
  • Gorepatil, P. B.; Mane, Y. D.; Ingle, V. S. Samarium(III) Triflate as an Efficient and Reusable Catalyst for Facile Synthesis of Benzoxazoles and Benzothiazoles in Aqueous Medium. Synlett 2013, 24, 2241–2244. DOI: 10.1055/s-0033-1339758.
  • Li, Y.; Wang, Y.-L.; Wang, J.-Y. A Simple Iodine-Promoted Synthesis of 2-Substituted Benzothiazoles by Condensation of Aldehydes with 2-Aminothiophenol. Chem. Lett. 2006, 35, 460–461. DOI: 10.1246/cl.2006.460.
  • Pratap, U. R.; Mali, J. R.; Jawale, D. V.; Mane, R. A. Bakers’ Yeast Catalyzed Synthesis of Benzothiazoles in an Organic Medium. Tetrahedron Lett. 2009, 50, 1352–1354. DOI: 10.1016/j.tetlet.2009.01.032.
  • Sadek, K. U.; Mekheimer, R. A.; Hameed, A. M. A.; Elnahas, F.; Elnagdi, M. H. Green and Highly Efficient Synthesis of 2-Arylbenzothiazoles Using Glycerol without Catalyst at Ambient Temperature. Molecules 2012, 17, 6011–6019. DOI: 10.3390/molecules17056011.
  • Al-Qalaf, F.; Mekheimer, R. A.; Sadek, K. U. Cerium (IV) Ammonium Nitrate (CAN) Catalyzed One-Pot Synthesis of 2-Arylbenzothiazoles. Molecules 2008, 13, 2908–2914. DOI: 10.3390/molecules13112908.
  • Riadi, Y.; Mamouni, R.; Azzalou, R.; Haddad, M. E.; Routier, S.; Guillaumet, G.; Lazar, S. An Efficient and Reusable Heterogeneous Catalyst Animal Bone Meal for Facile Synthesis of Benzimidazoles, Benzoxazoles, and Benzothiazoles. Tetrahedron Lett. 2011, 52, 3492–3495. DOI: 10.1016/j.tetlet.2011.04.121.
  • Lee, A. S. Y.; Chung, C. H.; Chang, Y. T.; Chen, P. L. L. Proline Catalyzed Condensation Reaction of Aldehyde or Carboxylic Acid with 2-Aminothiophenol under Solvent-Free and Microwave Irradiation. J. Applied Sci. Eng. 2012, 15, 311–315.
  • Sajjadifar, S.; Mirshokraie, S. A.; Javaherneshan, N.; Louie, O. SBSA as a New and Efficient Catalyst for the One-Pot Green Synthesis of Benzimidazole Derivatives at Room Temperature. Am. J. Org. Chem. 2012, 2, 1–6. DOI: 10.5923/j.ajoc.20120202.01.
  • Xiangming, H.; Huiqiang, M.; Yulu, W. p-TsOH Catalyzed Synthesis of 2-Arylsubstituted Benzimidazoles. Arkivoc 2007, 2007, 150–154. DOI: 10.3998/ark.5550190.0008.d18.
  • López, S. E.; Restrepo, J.; Pérez, B.; Ortiz, S.; Salazar, J. One Pot Microwave Promoted Synthesis of 2-Aryl-1H-Benzimidazoles Using Sodium Hydrogen Sulfite. Bull. Korean Chem. Soc. 2009, 30, 1628–1630.
  • Kumar, R.; Joshi, Y. C. Mild and Efficient One Pot Synthesis of Imidazolines and Benzimidazoles from Aldehydes. E-J. Chem. 2007, 4, 606–610. DOI: 10.1155/2007/756267.
  • Chen, G.-F.; Dong, X.-Y. Facile and Selective Synthesis of 2-Substituted Benzimidazoles Catalyzed by FeCl3/Al2O3. E-J. Chem. 2012, 9, 289–293. DOI: 10.1155/2012/197174.
  • Ali, A.; Ahsan, M. L.; Ahmed, I. Synthesis of Benzimidazole Derivatives under Microwave Irradiation. Eur. J. Adv. Chem. 2011, 3, 50–54.
  • Kidwai, M.; Jahan, A.; Bhatnagar, D. Polyethylene Glycol: A Recyclable Solvent System for the Synthesis of Benzimidazole Derivatives Using CAN as Catalyst. J. Chem. Sci. 2010, 122, 607–612. DOI: 10.1007/s12039-010-0095-7.
  • Borhade, A. V.; Tope, D. R.; Patil, D. R. An Efficient Synthesis of Benzimidazole by Cyclization–Oxidation Processes Using Fe/MgO as a Heterogeneous Recyclable Catalyst. J. Chem. Pharm. Res. 2012, 4, 2501–2506.
  • Prabhakar, V.; Sudhakar Babu, K.; Ravindranath, L. K.; Latha, J. Facile and Efficient One-Pot Synthesis of Benzimidazoles Using Lanthanide Triflate Catalyst. World J. Pharmacy Pharmaceutical Sci. 2015, 4, 553–566.
  • Niwadange, S. N.; Mahurkar, S. S.; Kagne, R. P. Synthesis of Benzimidazole Derivatives in an Aqueous Media and Reflux Conditions Catalysed by L-Proline at pH-4.2. Int. J. Res. Anal. Rev. 2019, 6, 485–491.
  • Venkateswarlu, Y.; Kumar, S. R.; Leelavathi, P. Facile and Efficient One-Pot Synthesis of Benzimidazoles Using Lanthanum Chloride. Org. Med. Chem. Lett. 2013, 3, 7. DOI: 10.1186/2191-2858-3-7.
  • Srinivasulu, R.; Kumar, K. R.; Satyanarayana, P. V. V. Facile and Efficient Method for Synthesis of Benzimidazolederivatives Catalyzed by Zinc Triflate. Green Sust. Chem. 2014, 04, 33–37. DOI: 10.4236/gsc.2014.41006.
  • Tripathi, J. P.; Kasana, V. K. Microwave Assisted Synthesis of Benzimidazoles Catalysed by Oxalic Acid. Int. J. Res. Appl. Sci. Eng. Tech. 2018, 6, 94–99. DOI: 10.22214/ijraset.2018.3015.
  • Park, S.; Jung, J.; Cho, E. J. Visible-Light-Promoted Synthesis of Benzimidazoles. Eur. J. Org. Chem. 2014, 2014, 4148–4154. DOI: 10.1002/ejoc.201402141.
  • Cano, N. H.; Uranga, J. G.; Nardi, M.; Procopio, A.; Wunderlin, D. A.; Santiago, A. N. Selective and Eco-Friendly Procedures for the Synthesis of Benzimidazole Derivatives. The Role of the Er(OTf)3 Catalyst in the Reaction Selectivity. Beilstein J. Org. Chem. 2016, 12, 2410–2419. DOI: 10.3762/bjoc.12.235.
  • Azeez, S.; Sureshbabu, P.; Chaudhary, P.; Sabiah, S.; Kandasamy, J. Tert-Butyl Nitrite Catalyzed Synthesis of Benzimidazoles from o-Phenylenediamine and Aldehydes at Room Temperature. Tetrahedron Lett. 2020, 61, 151735. DOI: 10.1016/j.tetlet.2020.151735.
  • Sharghi, H.; Hosseini-Sarvari, M.; Moeini, F. Copper Catalyzed One-Pot Synthesis of Benzimidazole Derivatives. Can. J. Chem. 2008, 86, 1044–1051. DOI: 10.1139/v08-153.
  • Kathirvelan, D.; Yuvaraj, P.; Babu, K.; Nagarajan, A. S.; Reddy, B. S. R. A Green Synthesis of Benzimidazoles. Indian J. Chem. 2013, 52B, 1152–1156.
  • Mobinikhaledi, A.; Hamta, A.; Kalhor, M.; Shariatzadeh, M. Simple Synthesis and Biological Evaluation of Some Benzimidazoles Using Sodium Hexafluroaluminate, Na3AlF6, as an Efficient Catalyst. Iran. J. Pharm. Res. 2014, 13, 95–101.
  • Shaikh, K. A.; Patil, V. A. An Efficient Solvent-Free Synthesis Ofimidazolines and Benzimidazoles Using K4[Fe(CN)6] Catalysis. Org. Commun. 2012, 5, 12–17.
  • Patil, V. D.; Patil, J.; Rege, P.; Dere, G. Mild and Efficient Synthesis of Benzimidazole Using Lead Peroxide under Solvent-Free Conditions. Synth. Commun. 2010, 41, 58–62. DOI: 10.1080/00397910903531789.
  • Karimi-Jaberi, Z.; Amiri, M. An Efficient and Inexpensive Synthesis of 2-Substituted Benzimidazoles in Water Using Boric Acid at Room Temperature. E-J. Chem. 2012, 9, 167–170. DOI: 10.1155/2012/793978.
  • Bhavsar, A.; Makone, S.; Shirodkar, S. Synthesis of Benzimidazole and Benzthiazole Derivatives by Using Ionic Liquids. Int. J. Adv. Res. Sci. Eng. Tech. 2016, 3, 2485–2487.
  • Cahyana, A. H.; Ardiansah, B.; Asrianti, N. A. Fe3O4 Nanoparticles: An Efficient and Recyclable Catalyst For Benzimidazoles Synthesis. Presented at the 3rd International Symposium on Current Progress in Mathematics and Sciences, Bali, Indonesia, July 26–27, 2017.
  • Chari, M. A.; Shobha, D.; Sasaki, T. Room Temperature Synthesis of Benzimidazole Derivatives Using Reusable Cobalt Hydroxide (II) and Cobalt Oxide (II) as Efficient Solid Catalysts. Tetrahedron Lett. 2011, 52, 5575–5580. DOI: 10.1016/j.tetlet.2011.08.047.
  • Rekha, M.; Hamza, A.; Venugopal, B. R.; Nagaraju, N. Synthesis of 2-Substituted Benzimidazoles and 1,5-Disubstituted Benzodiazepines on Alumina and Zirconia Catalysts. Chin. J. Catal. 2012, 33, 439–446. DOI: 10.1016/S1872-2067(11)60338-0.
  • Chaudhari, C.; Hakim Siddiki, S. M. A.; Shimizu, K. Acceptorless Dehydrogenative Synthesis of Benzothiazoles and Benzimidazoles from Alcohols or Aldehydes by Heterogeneous Pt Catalysts under Neutral Conditions. Tetrahedron Lett. 2015, 56, 4885–4888. DOI: 10.1016/j.tetlet.2015.06.073.
  • Vidhate, K. N.; Waghmare, R. A. An Efficient and Ecofriendly RuO2-MoO3 Solid Heterogeneous Catalyst for Thesynthesis of Benzimidazole from Aldehydes. Adv. Appl. Sci. Res. 2015, 6, 167–170.
  • Martins, G. M.; Puccinelli, T.; Gariani, R. A.; Xavier, F. R.; Silveira, C. C.; Mendes, S. R. Facile and Efficient Aerobic One-Pot Synthesis of Benzimidazoles Using Ce(NO3)3.6H2O as Promoter. Tetrahedron Lett. 2017, 58, 1969–1972. DOI: 10.1016/j.tetlet.2017.04.020.
  • Khan, A. T.; Parvin, T.; Choudhury, L. H. A Simple and Convenient One-Pot Synthesis of Benzimidazole Derivatives Using Cobalt(II) Chloride Hexahydrate as Catalyst. Synth. Commun. 2009, 39, 2339–2346. DOI: 10.1080/00397910802654815.
  • Venkateswarlu, Y.; Kumar, S. R.; Leelavathi, P. Facile and Efficient One-Pot Synthesis of Benzimidazoles Using Lanthanum Chloride. Org. Med. Chem. Lett. 2013, 3, 1–8.
  • Nagasawa, Y.; Matsusaki, Y.; Hotta, T.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Aerobic Photooxidative Synthesis of Benzimidazoles from Aromatic Aldehydes and Diamines Using Catalytic Amounts of Magnesium Iodide. Tetrahedron Lett. 2014, 55, 6543–6546. DOI: 10.1016/j.tetlet.2014.10.001.
  • Ghosh, P.; Subba, R. MgCl2.6H2O Catalyzed Highly Efficient Synthesis of 2-Substituted-1H-Benzimidazoles. Tetrahedron Lett. 2015, 56, 2691–2694. DOI: 10.1016/j.tetlet.2015.04.001.
  • Subrahmanyam, C. S.; Narayanan, S. Yttrium (III) Chloride: A Mild and Efficient Catalyst for the Synthesis of Benzimidazoles. Int. J. Appl. Biol. Pharm. 2010, 1, 689–794.
  • Qin, M.; Fu, Y.; Wang, X.; Zhang, Y.; Ma, W. Green Synthesis of Benzimidazole Derivatives Catalyzed by Ionic Liquid under Microwave Irradiation. J. Iran. Chem. Soc. 2014, 11, 1553–1559. DOI: 10.1007/s13738-014-0426-6.
  • Pasha, M. A.; Nizam, A. Amberlite IR-120 Catalyzed, Microwave-Assisted Rapid Synthesis of 2-Aryl-Benzimidazoles. J. Saudi Chem. Soc. 2012, 16, 237–240. DOI: 10.1016/j.jscs.2011.01.004.
  • Sontakke, V. A.; Ghosh, S.; Lawande, P. P.; Chopade, B. A.; Shinde, V. S. A Simple, Efficient Synthesis of 2-Aryl Benzimidazoles Using Silica Supported Periodic Acid Catalyst and Evaluation of Anticancer Activity. ISRN Org. Chem. 2013, 2013, 1–7. DOI: 10.1155/2013/453682.
  • Azarifar, D.; Pirhayati, M.; Maleki, B.; Sanginabadi, M.; Yami, R. N. Acetic Acid-Promoted Condensation of o-Phenylenediamine with Aldehydes into 2-Aryl-1-(Arylmethyl)-1H-Benzimidazoles under Microwave Irradiation. J. Serb. Chem. Soc. 2010, 75, 1181–1189. DOI: 10.2298/JSC090901096A.
  • Yang, D.; Zhu, X.; Wei, W.; Sun, N.; Yuan, L.; Jiang, M.; You, J.; Wang, H. Magnetically Recoverable and Reusable CuFe2O4 Nanoparticle-Catalyzed Synthesis of Benzoxazoles, Benzothiazoles and Benzimidazoles Using Dioxygen as Oxidant. RSC Adv. 2014, 4, 17832–17839. DOI: 10.1039/C4RA00559G.
  • Banerjee, B. Recent Developments on Organo-Bicyclo-Bases Catalyzed Multicomponent Synthesis of Biologically Relevant Heterocycles. Curr. Org. Chem. 2018, 22, 208–233. DOI: 10.2174/1385272821666170703123129.
  • Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic Applications of Saccharin and Its Derivatives in Organic Synthesis. Curr. Org. Chem. 2020, 23, 3191–3205. DOI: 10.2174/1385272823666191121144758.
  • Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic Acid: An Efficient Brønsted Acidsurfactant-Combined Catalyst to Carry out Diverse Organic Transformations in Aqueous Medium. ChemistrySelect 2018, 3, 12918–12936. DOI: 10.1002/slct.201802824.
  • Brahmachari, G.; Banerjee, B. Facile and One-Pot Access to Divers and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans and Pyranannulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organocatalyst. ACS Sust. Chem. Eng. 2014, 2, 411–422. DOI: 10.1021/sc400312n.
  • Banerjee, B.; Brahmachari, G. Room Temperature Metal-Free Synthesis of Aryl/Heteroaryl-Substituted Bis(6-Aminouracil-5-yl)Methanes Using Sulfamic Acid (NH2SO3H) as an Efficient and Eco-Friendly Organo-Catalyst. Curr. Organocat. 2016, 3, 125–132. DOI: 10.2174/2213337202666150812231130.
  • Brahmachari, G.; Banerjee, B. Sulfamic Acid-Catalyzed Carboncarbon and Carbon-Heteroatom Bond Forming Reactions: An Overview. Curr. Organocat. 2016, 3, 93–124. DOI: 10.2174/2213337202666150812230830.
  • Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): An Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Curr. Green Chem. 2018, 5, 150–167. DOI: 10.2174/2213346105666181001113413.
  • Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V. K.; Banerjee, B. Naturally Occurring Organic Acid-Catalyzed Facile Diastereoselective Synthesis of Biologically Active (E)-3-(Arylimino)Indolin-2-One Derivatives in Water at Room Temperature. Curr. Org. Chem. 2019, 23, 1778–1788. DOI: 10.2174/1385272822666190924182538.
  • Singh, A.; Kaur, G.; Kaur, A.; Gupta, V. K.; Banerjee, B. A General Method for the Synthesis of 3,3-Bis(Indol-3-yl)Indolin-2-Ones, Bis(Indol-3-yl)(Aryl)Methanes and Tris(Indol-3-yl)Methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-Catalyst in Aqueous Ethanol at Room Temperature. Curr. Green Chem. 2020, 7, 128–140. DOI: 10.2174/2213346107666200228125715.
  • Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Mandelic Acid Catalyzed One-Pot Threecomponent Synthesis of α-Aminonitriles and α-Aminophosphonates under Solvent-Free Conditions at Room Temperature. Synth. Commun. 2020, 50, 1545–1560. DOI: 10.1080/00397911.2020.1745844.
  • Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V. K.; Banerjee, B. Mandelic Acid: An Efficient Organo-Catalyst for the Synthesis of 3-Substituted-3-Hydroxy-Indolin-2-Ones and Related Derivatives in Aqueous Ethanol at Room Temperature. Curr. Organocatal. 2021, 8, DOI: 10.2174/2213337207999200713145440.
  • Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Camphor Sulfonic Acid Catalyzed Facile and General Method for the Synthesis of 3,3'-(Arylmethylene)Bis(4-Hydroxy-2H-Chromen-2-Ones), 3,3'-(Arylmethylene)Bis(2-Hydroxynaphthalene-1,4-Diones) and 3,3'-(2-Oxoindoline-3,3-Diyl)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives at Room Temperature. Synth. Commun. 2020, DOI: 10.1080/00397911.2020.1856877.
  • Kaur, G.; Singh, A.; Kaur, N. p-Sulfonic acid Calix[n]arene catalyzed synthesis of bioactive heterocycles: a review. Curr. Org. Chem. 2020, 25, 209–222. DOI: 10.1080/00397911.2020.1745844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.