Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 7
428
Views
19
CrossRef citations to date
0
Altmetric
Articles

A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature

, , & ORCID Icon
Pages 1121-1131 | Received 11 Oct 2020, Published online: 21 Feb 2021

References

  • Pedersen, O. S.; Pedersen, E. B. Non-Nucleoside Reverse Transcriptase Inhibitors: The NNRTI Boom. Antivir. Chem. Chemother. 1999, 10, 285–314. DOI: 10.1177/095632029901000601.
  • Seeler, A. O.; Mushett, C. W.; Graessle, O.; Silber, R. H. Pharmacological Studies on Sulfaquinoxaline. J. Pharma. Exp. Therap 1944, 82, 357–363.
  • Kakodkar, N. C.; Peddinti, R.; Kletzel, M.; Tian, Y.; Guerrero, L. J.; Undevia, S. D.; Geary, D.; Chlenski, A.; Yang, Q.; Salwen, H. R.; Cohn, S. L. The Quinoxaline anti-Tumor Agent (R+)XK469 Inhibits Neuroblastoma Tumor Growth. Pediatr Blood Cancer. 2011, 56, 164–167. DOI: 10.1002/pbc.22639.
  • Gao, H.; Yamasaki, E. F.; Chan, K. K.; Shen, L. L.; Snapka, R. M. Chloroquinoxaline Sulfonamide (NSC 339004) is a Topoisomerase IIα/β Poison. Cancer Res. 2000, 60, 5937–5940.
  • Richards, H. C.; Housley, J. R.; Spooner, D. F. Quinacillin: A New Penicillin with Unusual Properties. Nature 1963, 199, 354–356. DOI: 10.1038/199354a0.
  • Barber, R. S.; Braude, R.; Hosking, Z. D.; Mitchell, K. G. Olaquindox as Performance-Promoting Feed Additive for Growing Pigs. Animal. Feed. Sci. Tech. 1979, 4, 117–123. DOI: 10.1016/0377-8401(79)90036-1.
  • Watanabe, K. Exploring the Biosynthesis of Natural Products and Their Inherent Suitability for the Rational Design of Desirable Compounds through Genetic Engineering. Biosci. Biotechnol. Biochem. 2008, 72, 2491–2506. DOI: 10.1271/bbb.80323.
  • Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I.; Monge, A. Synthesis and Biological Evaluation of New Quinoxaline Derivatives as Antioxidant and anti-Inflammatory Agents. Chem. Biol. Drug. Des. 2011, 77, 255–267. DOI: 10.1111/j.1747-0285.2011.01076.x.
  • Geethavani, M.; Reddy, J. R.; Sathyanarayana, S. V. Synthesis, Antimicrobial and Wound Healing Activities of Diphenyl Quinoxaline Derivatives. Int. J. Pharm. Technol. 2012, 4, 4700–4710.
  • Morales-Castellanos, J. J.; Ramírez-Hernández, K.; Gómez-Flores, N. S.; Rodas-Suárez, O. R.; Peralta-Cruz, J. Microwave-Assisted Solvent-Free Synthesis and In Vitro Antibacterial Screening of Quinoxalines And Pyrido[2, 3b]pyrazines. Molecules 2012, 17, 5164–5176. DOI: 10.3390/molecules17055164.
  • Tseng, C.-H.; Han, C.-R.; Tang, K.-W. Discovery of 3-Arylquinoxaline Derivatives as Potential anti-Dengue Virus Agents. Int. J. Mol. Sci. 2019, 20, 4786. DOI: 10.3390/ijms20194786.
  • Karki, S. S.; Hazare, R.; Kumar, S.; Bhadauria, V.; Balzarini, J.; Clercq, E. D. Synthesis, Anticancer and Cytostatic Activity of Some 6H-Indolo[2,3-b]Quinoxalines. Acta Pharm 2009, 59, 431–440.
  • Keinan, S.; Paquette, W. D.; Skoko, J. J.; Beratan, D. N.; Yang, W.; Shinde, S.; Johnston, P. A.; Lazo, J. S.; Wipf, P. Computational Design, Synthesis and Biological Evaluation of Para-Quinone-Based Inhibitors for Redox Regulation of the Dual-Specificity Phosphatase Cdc25B. Org. Biomol. Chem. 2008, 6, 3256–3263. DOI: 10.1039/b806712k.
  • Tajbakhsh, M.; Bazzar, M.; Ramzanian, S. F.; Tajbakhsh, M. Sulfonated Nano Clay Minerals as a Recyclable Eco-Friendly Catalyst for the Synthesis of Quinoxaline Derivatives in Green Media. Appl. Clay Sci. 2014, 88–89, 178–185. DOI: 10.1016/j.clay.2013.12.023.
  • Alinezhad, H.; Tajbakhsh, M.; Salehian, F.; Biparva, P. Synthesis of Quinoxaline Derivatives Using TiO2 Nanoparticles as an Efficient and Recyclable Catalyst. Bull. Korean Chem. Soc. 2011, 32, 3720–3725. DOI: 10.5012/bkcs.2011.32.10.3720.
  • Khaksar, S.; Rostamnezhad, F. A Novel One-Pot Synthesis of Quinoxaline Derivatives in Fluorinated Alcohols. Bull. Korean Chem. Soc. 2012, 33, 2581–2584. DOI: 10.5012/bkcs.2012.33.8.2581.
  • Krishnakumar, B.; Swaminathan, M. A Recyclable Solid Acid Catalyst Sulfated Titania for Easy Synthesis of Quinoxaline and Dipyridophenazine Derivatives under Microwave Irradiation. Bull. Chem. Soc. Japan. 2011, 84, 1261–1266. DOI: 10.1246/bcsj.20110152.
  • Huang, T.-K.; Wang, R.; Shi, L.; Lu, X.-X. Montmorillonite K-10: An Efficient and Reusable Catalyst for the Synthesis of Quinoxaline Derivatives in Water. Catal. Commun. 2008, 9, 1143–1147. DOI: 10.1016/j.catcom.2007.10.024.
  • Katkar, S.; Mohite, P.; Gadekar, L.; Arbad, B.; Lande, M. ZnO-Beta Zeolite Mediated Simple and Efficient Method for the One-Pot Synthesis of Quinoxaline Derivatives at Room Temperature. Cent. Eur. J. Chem. 2010, 8, 320–325.
  • Huang, T. K.; Shi, L.; Wang, R.; Guo, X. Z.; Lu, X. X. Keggin Type Heteropolyacids-Catalyzed Synthesis of Quinoxaline Derivatives in Water. Chin. Chem. Lett. 2009, 20, 161–164. DOI: 10.1016/j.cclet.2008.10.048.
  • Lü, H.-Y.; Yang, S.-H.; Deng, J.; Zhang, Z.-H. Magnetic Fe3O4 Nanoparticles as New, Efficient, and Reusable Catalysts for the Synthesis of Quinoxalines in Water. Aust. J. Chem. 2010, 63, 1290–1296. DOI: 10.1071/CH09532.
  • Mirjalili, B. B. F.; Akbari, A. Nano-TiO2: An Eco-Friendly Alternative for the Synthesis of Quinoxalines. Chin. Chem. Lett. 2011, 22, 753–756. DOI: 10.1016/j.cclet.2010.12.016.
  • Khaksar, S.; Tajbakhsh, M.; Gholami, M.; Rostamnezhad, F. A Highly Efficient Procedure for the Synthesis of Quinoxaline Derivatives Using Polyvinylpolypyrrolidone Supported Triflic Acid Catalyst (PVPP.OTf). Chin. Chem. Lett. 2014, 25, 1287–1290. DOI: 10.1016/j.cclet.2014.04.008.
  • Hakimi, F.; Mirjalili, B. B. F. Synthesis of Quinoxalines in the Presence of Heteropoly Acids. Current. Chem. Lett. 2013, 2, 105–108. DOI: 10.5267/j.ccl.2013.01.001.
  • Rekha, M.; Kathyayini, H.; Nagaraju, N. Catalytic Activity of Manganese Oxide Supported on Alumina in the Synthesis of Quinoxalines. Front. Chem. Sci. Eng. 2013, 7, 415–421. DOI: 10.1007/s11705-013-1360-3.
  • Kolvari, E.; Zolfigol, M. A.; Peiravi, M. Green Synthesis of Quinoxaline Derivatives Using Pdodecylbenzensulfonic Acid as a Surfactant-Type Bronsted Acid Catalyst in Water. Green Chem. Lett. Rev. 2012, 5, 155–159. DOI: 10.1080/17518253.2011.606849.
  • Esmaeilpour, M.; Sardarian, A. R. Fe3O4@SiO2/Schiff Base Complex of Metal Ions as an Efficient and Recyclable Nanocatalyst for the Green Synthesis of Quinoxaline Derivatives. Green Chem. Lett. Rev. 2014, 7, 301–308. DOI: 10.1080/17518253.2014.948078.
  • Heravi, M. M.; Bakhtiari, K.; Hossein, A.; Oskooie; S. Taheri, MnCl2-Promoted Synthesis of Quinoxaline Derivatives at Room Temperature. Heteroatom Chem. 2008, 19, 218–220. DOI: 10.1002/hc.20401.
  • Dandia, A.; Singh, R.; Joshi, J.; Maheshwari, S. Magnetically Separable CuFe2O4 Nanoparticles: An Efficient Catalyst for the Synthesis of Quinoxaline Derivatives in Tap-Water under Sonication. Eur. Chem. Bull. 2013, 2, 825–829.
  • Karami, B.; Khodabakhshi, S. A Novel and Simple Synthesis of Some New and Known Dibenzo Phenazine and Quinoxaline Derivatives Using Lead Dichloride. J. Chil. Chem. Soc. 2013, 58, 1655–1658. DOI: 10.4067/S0717-97072013000200002.
  • Karami, B.; Khodabakhshi, S. A Facile Synthesis of Phenazine and Quinoxaline Derivatives Using Magnesium Sulfate Heptahydrate as a Catalyst. J. Serb. Chem. Soc. 2011, 76, 1191–1198. DOI: 10.2298/JSC100801104K.
  • Karami, B.; Khodabakhshi, S.; Nikrooz, M. Synthesis of Aza-Polycyclic Compounds: Novel Phenazines and Quinoxalines Using Molybdate Sulfuric Acid (MSA). Polycycl. Aromat. Compd. 2011, 31, 97–109. DOI: 10.1080/10406638.2011.572577.
  • Niknam, K.; Saberi, D.; Mohagheghnejad, M. Silica Bonded S-Sulfonic Acid: A Recyclable Catalyst for the Synthesis of Quinoxalines at Room Temperature. Molecules 2009, 14, 1915–1926. DOI: 10.3390/molecules14051915.
  • Karami, B.; Khodabakhshi, S.; Nikrooz, M. A Modified Synthesis of Some Novel Polycyclic Aromatic Phenazines and Quinoxalines by Using the Tungstate Sulfuric Acid (TSA) as a Reusable Catalyst under Solvent-Free Conditions. J. Chinese Chem. Soc. 2012, 59, 187–192. DOI: 10.1002/jccs.201100421.
  • Bodaghifard, M. A.; Mobinikhaledi, A.; Zendehdel, M.; Ayalvar, Z. An Efficient Synthesis of Quinoxaline Derivatives Using Zeolite y as a Catalyst. Rev. Roum. Chim. 2015, 60, 345–348.
  • De, S.; Subran, S. K.; Ramasamy, S. K.; Banerjee, S.; Paira, P.; Kalleshappa, A. K. S. Luminescent Anticancer Acenaphtho[1,2-b]Quinoxaline: Green Synthesis. ChemistrySelect 2018, 3, 5421–5430. DOI: 10.1002/slct.201800487.
  • Banerjee, B. Recent Developments on Organo-Bicyclo-Bases Catalyzed Multicomponent Synthesis of Biologically Relevant Heterocycles. Coc. 2018, 22, 208–233. DOI: 10.2174/1385272821666170703123129.
  • Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic Applications of Saccharin and Its Derivatives in Organic Synthesis. Curr. Org. Chem. 2020, 23, 3191–3205. DOI: 10.2174/1385272823666191121144758.
  • Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic Acid: An Efficient Brønsted Acidsurfactant-Combined Catalyst to Carry out Diverse Organic Transformations in Aqueous Medium. ChemistrySelect 2018, 3, 12918–12936. DOI: 10.1002/slct.201802824.
  • Brahmachari, G.; Banerjee, B. Facile and One-Pot Access to Divers and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans and Pyranannulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organocatalyst. ACS Sustainable Chem. Eng. 2014, 2, 411–422. DOI: 10.1021/sc400312n.
  • Banerjee, B.; Brahmachari, G. Room Temperature Metal-Free Synthesis of Aryl/Heteroaryl-Substituted Bis(6-Aminouracil-5-yl)Methanes Using Sulfamic Acid (NH2SO3H) as an Efficient and Eco-Friendly Organo-Catalyst. Curr. Organocatal. 2016, 3, 125–132. DOI: 10.2174/2213337202666150812231130.
  • Brahmachari, G.; Banerjee, B. Sulfamic Acid-Catalyzed Carboncarbon and Carbon-Heteroatom Bond Forming Reactions: An Overview. Cocat. Organocatal. 2016, 3, 93–124. DOI: 10.2174/2213337202666150812230830.
  • Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): An Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Curr. Green Chem. 2018, 5, 150–167. DOI: 10.2174/2213346105666181001113413.
  • Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V. K.; Banerjee, B. Naturally Occurring Organic Acid-Catalyzed Facile Diastereoselective Synthesis of Biologically Active (E)-3-(Arylimino)Indolin-2-One Derivatives in Water at Room Temperature. Curr. Green Chem. 2019, 23, 1778–1788. DOI: 10.2174/1385272822666190924182538.
  • Singh, A.; Kaur, G.; Kaur, A.; Gupta, V. K.; Banerjee, B. A General Method for the Synthesis of 3,3-Bis(Indol-3-yl)Indolin-2-Ones, Bis(Indol-3-yl)(Aryl)Methanes and Tris(Indol-3-yl)Methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-Catalyst in Aqueous Ethanol at Room Temperature. Curr. Green Chem. 2020, 7, 128–140. DOI: 10.2174/2213346107666200228125715.
  • Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Mandelic Acid Catalyzed One-Pot Threecomponent Synthesis of α-Aminonitriles and α-Aminophosphonates under Solvent-Free Conditions at Room Temperature. Synth. Commun. 2020, 50, 1545–1560. DOI: 10.1080/00397911.2020.1745844.
  • Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V. K.; Banerjee, B. Mandelic Acid: An Efficient Organo-Catalyst for the Synthesis of 3-Substituted-3-Hydroxy-Indolin-2-Ones and Related Derivatives in Aqueous Ethanol at Room Temperature. Curr. Organocatal. 2021, 8. DOI: 10.2174/2213337207999200713145440.
  • Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Camphor Sulfonic Acid Catalyzed Facile and General Method for the Synthesis of 3,3′-(Arylmethylene)Bis(4-Hydroxy-2H-Chromen-2-One) and 3,3'-(Arylmethylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives at Room Temperature. Synth. Commun 2021, 51. DOI: 10.1080/00397911.2020.1856877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.