Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 9
204
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis of enantiomerically enriched non-protein α-amino acids and their study as aldose reductase inhibitors

ORCID Icon, , , ORCID Icon, , , , , , , & show all
Pages 1433-1450 | Received 12 Oct 2020, Published online: 16 Mar 2021

References

  • Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. The Future of Peptide-Based Drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. DOI: 10.1111/cbdd.12055.
  • Fosgerau, K.; Hoffmann, T. Peptide Therapeutics: Current Status and Future Directions. Drug Discov. Today 2015, 20, 122–128. DOI: 10.1016/j.drudis.2014.10.003.
  • Lovering, F. Escape from Flatland 2: Complexity and Promiscuity. Med. Chem. Commun. 2013, 4, 515–519. DOI: 10.1039/c2md20347b.
  • Arnold, M.; Blaskovich, T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59, 10807–10836. DOI: 10.1021/acs.jmedchem.6b00319.
  • Mei, H.; Han, J.; Klika, K. D.; Izawa, K.; Sato, T.; Meanwell, N. A.; Soloshonok, V. A. Applications of Fluorine-Containing Amino Acids for Drug Design. Eur. J. Med. Chem. 2020, 186, 111826. DOI: 10.1016/j.ejmech.2019.111826.
  • Roviello, G. N.; Iannitti, R.; Palumbo, R.; Simonyan, H.; Vicidomini, C.; Roviello, V. Lac-L-TTA, a Novel Lactose-Based Amino Acid–Sugar Conjugate for Anti-Metastatic Applications . Amino Acids 2017, 49, 1347–1353. DOI: 10.1007/s00726-017-2433-2.
  • Roviello, G. N.; Iannitti, R.; Roviello, V.; Palumbo, R.; Simonyan, H.; Vicidomini, C. Synthesis and Biological Evaluation of a Novel Amadori Compound. Amino Acids 2017, 49, 327–335. DOI: 10.1007/s00726-016-2363-4.
  • Fik-Jaskółka, M. A.; Mkrtchyan, A. F.; Saghyan, A. S.; Palumbo, R.; Belter, A.; Hayriyan, L. A.; Simonyan, H.; Roviello, V.; Roviello, G. N. Spectroscopic and SEM Evidences for G4-DNA Binding by a Synthetic Alkyne-Containing Amino Acid with Anticancer Activity. Spectrochim. Acta, Part A 2020, 229, 117884. DOI: 10.1016/j.saa.2019.117884.
  • Mkrtchyan, A. F.; Hayriyan, L. A.; Karapetyan, A. J.; Tovmasyan, A. S.; Tsaturyan, A. H.; Khrustalev, V. N.; Maleev, V. I.; Saghyan, A. S. Using the Ni-[(Benzylprolyl)Amino]Benzophenone Complex in the Glaser Reaction for the Synthesis of Bis α-Amino Acids. New J. Chem. 2020, 44, 11927–11932. DOI: 10.1039/D0NJ02072A.
  • Saghyan, A. S.; Simonyan, H. M.; Petrosyan, S. G.; Geolchanyan, A. V.; Roviello, G. N.; Musumeci, D.; Roviello, V. Thiophenyl-Substituted Triazolyl-Thione L-Alanine: Asymmetric Synthesis, Aggregation and Biological Properties. Amino Acids 2014, 46, 2325–2332. DOI: 10.1007/s00726-014-1782-3.
  • Shilajyan, H. A.; Grigoryan, K. R. UV/Vis and Fluorescence Study on the Interaction of Ni(II) Complex of Schiff Base of Glycine and Chiral Auxiliary (S)-2-[N-(N′-Benzylprolyl)Amino]Benzophenone with Bovine Serum Albumin. Monatsh. Chem. 2020, 151, 135–139. DOI: 10.1007/s00706-019-02527-y.
  • Paidimuddala, B.; Krishna, G.; Sathyanarayana, N.; Gummadi, A. Halotolerant Aldose Reductase from Debaryomyces Nepalensis: Gene Isolation, Overexpression and Biochemical Characterization. RSC Adv. 2017, 7, 20384–20393. DOI: 10.1039/C7RA01697B.
  • Flynn, T. G. Aldehyde Reductases: Monomeric NADPH-Dependent Oxidoreductases with Multifunctional Potential. Biochem. Pharmacol. 1982, 31, 2705–2712. DOI: 10.1016/0006-2952(82)90123-x.
  • Qin, X.; Hao, X.; Han, H.; Zhu, S.; Yang, Y.; Wu, B.; Hussain, S.; Parveen, S.; Jing, C.; Ma, B.; Zhu, C. Design and Synthesis of Potent and Multifunctional Aldose Reductase Inhibitors Based on Quinoxalinones. J. Med. Chem. 2015, 58, 1254–1267. DOI: 10.1021/jm501484b.
  • Sato, S.; Kador, P. F. Human Kidney Aldose and Aldehyde Reductases. J. Diabetes Complications 1993, 7, 179–187. DOI: 10.1016/1056-8727(93)90043-x.
  • Costantino, L.; Rastelli, G.; Gamberini, M. C.; Barlocco, D. Pharmacological Approaches to the Treatment of Diabetic Complications. Expert Opin. Ther. Pat. 2000, 10, 1245–1262. DOI: 10.1517/13543776.10.8.1245.
  • Hotta, N. New Approaches for Treatment in Diabetes: Aldose Reductase Inhibitors. Biomed. Pharmacother. 1995, 5, 244–250.
  • Miyamoto, S. Recent Advances in Aldose Reductase Inhibitors: potential Agents for the Treatment of Diabetic Complications. Expert Opin. Ther. Pat. 2002, 12, 621–631. DOI: 10.1517/13543776.12.5.621.
  • Parpart, S.; Petrosyan, A.; Jawad, S.; Shah, A.; Akeem, R.; Ehlers, P.; Grigoryan, T.; Mkrtchyan, A. F.; Mardiyan, Z. Z.; Karapetyan, A. J.; Tsaturyan, A. H.; et al. Synthesis of Optically Pure (S)-2-Amino-5-Arylpent-4-Ynoic Acids by Sonogashira Reactions and Their Potential Use as Highly Selective Potent Inhibitors of Aldose Reductase. RSC Adv. 2015, 5, 107400–107412. DOI: 10.1039/C5RA22407A.
  • Larionov, V. A.; Savel'yeva, T. F.; Medvedev, M. G.; Stoletova, N. V.; Smol'yakov, A. F.; Gugkaeva, Z. G.; Cruchter, T.; Maleev, V. I. The Selective N‐Functionalization of Indoles via Aza‐Michael Addition in the Ligand Sphere of a Chiral Nickel(II) Complex: Asymmetric Synthesis of (S)‐1H‐Indole‐Alanine Derivatives. Eur. J. Org. Chem. 2019, 2019, 3699–3703. DOI: 10.1002/ejoc.201900650.
  • Luis, A. J.; Sorochinsky, A. E.; Soloshonok, V. A. Asymmetric Synthesis of α-Amino Acids Via Homologation of Ni(II) Complexes of Glycine Schiff Bases. Part 3: Michael Addition Reactions and Miscellaneous Transformations. Amino Acids 2014, 46, 2047–2073. DOI: 10.1007/s00726-014-1764-5.
  • Mei, H.; Han, J.; Takeda, R.; Sakamoto, T.; Miwa, T.; Minamitsuji, Y.; Moriwaki, H.; Abe, H.; Soloshonok, V. A. Practical Method for Preparation of (S)-2-Amino-5,5,5-Trifluoropentanoic Acid Via Dynamic Kinetic Resolution. ACS Omega 2019, 4, 11844–11851. DOI: 10.1021/acsomega.9b01537.
  • Mei, H.; Hiramatsu, T.; Takeda, R.; Moriwaki, H.; Abe, H.; Han, J.; Soloshonok, V. A. Expedient Asymmetric Synthesis of (S)-2-Amino-4,4,4-Trifluorobutanoic Acid via Alkylation of Chiral Nucleophilic Glycine Equivalent. Org. Process Res. Dev. 2019, 23, 629–634. DOI: 10.1021/acs.oprd.8b00404.
  • Romoff, T. T.; Ignacio, B. E.; Mansour, N.; Palmer, A. B.; Creighton, C. J.; Abe, H.; Moriwaki, H.; Han, J.; Konno, H.; Soloshonok, V. A. Large-Scale Synthesis of the Glycine Schiff Base Ni(II) Complex Derived from (S)-and (R)-N-(2-Benzoyl-4-Chlorophenyl)-1-[(3,4-Dichlorophenyl)Methyl]-2-Pyrrolidinecarboxamide. Org. Process Res. Dev. 2020, 24, 294–634. DOI: 10.1021/acs.oprd.9b00399.
  • Saghyan, A. S.; Langer, P. Asymmetric Synthesis of Non-Proteinogenic Amino Acids; Wiley-VCH: Weinheim, 2016.
  • Sorochinsky, A. E.; Aceña, J. L.; Moriwaki, H.; Sato, T.; Soloshonok, V. Asymmetric Synthesis of α-Amino Acids Via Homologation of Ni(II) Complexes of Glycine Schiff Bases. Part 2: Aldol, Mannich Addition Reactions, Deracemization and (S) to (R) Interconversion of α-Amino Acids. Amino Acids 2013, 45, 1017–1033. DOI: 10.1007/s00726-013-1580-3.
  • Sorochinsky, A. E.; Aceña, J. L.; Moriwaki, H.; Sato, T.; Soloshonok, V. A. Asymmetric Synthesis of α-Amino Acids via Homologation of Ni(II) Complexes of Glycine Schiff Bases; Part 1: Alkyl Halide Alkylations. Amino Acids 2013, 45, 691–718. DOI: 10.1007/s00726-013-1539-4.
  • Yin, Z.; Moriwaki, H.; Abe, H.; Miwa, T.; Han, J.; Soloshonok, V. A. Large-Scale Asymmetric Synthesis of Fmoc-(S)-2-Amino-6,6,6-Trifluorohexanoic Acid. ChemistryOpen 2019, 8, 701–704. DOI: 10.1002/open.201900131.
  • Jörres, M.; Aceña, J. L.; Soloshonok, V. A.; Bolm, C. Asymmetric Carbon–Carbon Bond Formation under Solventless Conditions in Ball Mills. ChemCatChem 2015, 7, 1265–1269. DOI: 10.1002/cctc.201500102.
  • Larionov, V. A.; Adonts, H. V.; Gugkaeva, Z. T.; Smol'yakov, A. F.; Saghyan, A. S.; Miftakhov, M. S.; Kuznetsova, S. A.; Maleev, V. I.; Belokon, Y. N. The Elaboration of a General Approach to the Asymmetric Synthesis of 1,4‐Substituted 1,2,3‐Triazole Containing Amino Acids via Ni(II) Complexes. ChemistrySelect 2018, 3, 3107–3110. DOI: 10.1002/slct.201800228.
  • Larionov, V. A.; Stoletova, N. V.; Kovalev, V. I.; Smol'yakov, A. F.; Savel'yeva, T. F.; Maleev, V. I. A General Synthesis of Unnatural α-Amino Acids by Iron-Catalysed Olefin–Olefin Coupling via Generated Radicals. Org. Chem. Front. 2019, 6, 1094–1099. DOI: 10.1039/C9QO00108E.
  • Mkrtchyan, A. F.; Saghyan, A. S.; Hayriyan, L. A.; Sargsyan, A. S.; Karapetyan, A. J.; Tovmasyan, A. S.; Tsaturyan, A. H.; Minasyan, E. V.; Poghosyan, A. S.; Paloyan, A. M.; et al. Asymmetric Synthesis, Biological Activity and Molecular Docking Studies of Some Unsaturated α-Amino Acids, Derivatives of Glycine, Allylglycine and Propargylglycine. J. Mol. Struct. 2020, 1208, 127850. DOI: 10.1016/j.molstruc.2020.127850.
  • Parpart, S.; Mardiyan, Z. Z.; Ehlers, P.; Petrosyan, A.; Mkrtchyan, A. F.; Saghyan, A. S.; Langer, P. Synthesis of Optically Pure (S,E)-2-Amino-5-Arylpent-4-Enoic Acids by Heck Reactions of Nickel Complexes. Synlett 2018, 29, 793–798. DOI: 10.1055/s-0037-1609094.
  • Saghyan, A. S.; Mkrtchyan, A. F.; Mardiyan, Z. Z.; Hayriyan, L. A.; Belokon, Y. N.; Langer, P. Synthesis of Enantiomerically Enriched Non-Proteinogenic α-Amino Acids Using the Suzuki Reaction. ChemistrySelect 2019, 4, 4686–4688. DOI: 10.1002/slct.201900698.
  • Saghyan, A. S.; Mkrtchyan, A. F.; Mardiyan, Z. Z.; Hayriyan, L. A.; Karapetyan, A. J.; Belokon, Y. N.; Ehlers, P.; Langer, P. Synthesis of Enantiomerically Enriched Alkynylaryl-Substituted α-Amino Acids Through Sonogashira Reactions. ChemistrySelect 2019, 4, 13806–13809. DOI: 10.1002/slct.201903072.
  • Belokon', Y. N.; Sagyan, A. S.; Djamgaryan, S. M.; Bakhmutov, V. I.; Belikov, V. M. Asymmetric Synthesis of β-Substituted α-Amino Acids via a Chiral Ni(II) Complex of Dehydroalanine. Тetrahedron 1988, 44, 5507–5514. DOI: 10.1016/S0040-4020(01)86056-7.
  • Steuber, H.; Heine, A.; Podjarny, A.; Klebe, G. Merging the Binding Sites of Aldose and Aldehyde Reductase for Detection of Inhibitor Selectivity-Determining Features. J. Mol. Biol. 2008, 379, 991–1016. DOI: 10.1016/j.jmb.2008.03.063.
  • Podjarny, A.; Cachau, R. E.; Schneider, T.; Van Zandt, M.; Joachimiak, A. Subatomic and Atomic Crystallographic Studies of Aldose Reductase: implications for Inhibitor Binding. Cell Mol. Life Sci. 2004, 61, 763–773. DOI: 10.1007/s00018-003-3404-1.
  • Urzhumtsev, A.; Tête-Favier, F.; Mitschler, A.; Barbanton, J.; Barth, P.; Urzhumtseva, L.; Biellmann, J. F.; Podjarny, A.; Moras, D. A 'Specificity' Pocket Inferred from the Crystal Structures of the Complexes of Aldose Reductase with the Pharmaceutically Important Inhibitors Tolrestat and Sorbinil. Structure 1997, 5, 601–612. DOI: 10.1016/s0969-2126(97)00216-5.
  • Collet, S.; Bauchat, P.; Danion-Bougot, R.; Danion, D. Stereoselective, Nonracemic Synthesis of ω-Borono-α-Amino Acids. Tetrahedron: Asymmetry 1998, 9, 2121–2131. DOI: 10.1016/S0957-4166(98)00186-4.
  • Saghyan, A. S.; Yedoyan, J. A.; Mkrtchyan, A. F.; Hovsepyan, GTs.; Tsaturyan, A. O.; Langer, P. Asymmetric Synthesis of New Enantiomerically Enriched α-Substituted Analogues of (S) –Propargylglycine. Chem. J. Armenia 2014, 67, 67–74.
  • Sato, S.; Old, S.; Carper, D.; Kador, P. F. Purification and Characterization of Recombinant Human Placental and Rat Lens Aldose Reductases Expressed in Escherichia coli. Adv. Exp. Med. Biol. 1995, 372, 259–268. DOI: 10.1007/978-1-4615-1965-2_32.
  • Trott, O.; Olson, A. J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334.
  • Morris, G.; Goodsell, D.; Halliday, R.; Huey, R.; Hart, W.; Belew, R.; Olson, A. Automated Docking Using a Lamarcian Genetic Algorithm and Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. DOI: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.