Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 16
274
Views
13
CrossRef citations to date
0
Altmetric
Articles

Synthesis and in vitro antimicrobial, antioxidant, and antiproliferative activities of some new pyrano[2,3-c]pyrazoles containing 1,2-azaphospholes, 1,3,2-diazaphosphinines and phosphonate moieties

, , , , , , ORCID Icon, , & show all
Pages 2478-2497 | Received 06 Apr 2021, Published online: 18 Jun 2021

Refernces

  • Chen, X.; Alidori, S.; Puschmann, F. F.; Santiso-Quinones, G.; Benkő, Z.; Li, Z.; Becker, G.; Grützmacher, H.-F.; Grützmacher, H. Sodium Phosphaethynolate as a Building Block for Heterocycles. Angew. Chem. Int. Ed. Engl. 2014, 53, 1641–1645. DOI: 10.1002/anie.201308220.
  • Franz, J. E.; Mao, M. K.; Sikorski, J. A. Gliphosate: A Unique Global Herbicide; American Chemical Society: Washington, DC, 1997.
  • Keglevich, G. Newer Developments in the Synthesis of P-Heterocycles. Curr. Org. Chem. 2019, 23, 1342–1355. DOI: 10.2174/1385272823666190726093322.
  • Mian, M. R.; Islamoglu, T.; Afrin, U.; Goswami, S.; Cao, R.; Kirlikovali, K. O.; Hall, M. G.; Peterson, G. W.; Farha, O. K. Catalytic Degradation of an Organophosphorus Agent at Zn–OH Sites in a Metal–Organic Framework. Chem. Mater. 2020, 32, 6998–7004. DOI:10.1021/acs.chemmater.0c02373..
  • Mathey, F. Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain; Pergamon: New York, NY, 2001.
  • Golla, M.; Devineni, S. R.; Syed, R.; Rayalacheru, B. K.; Maram, R.; Chamarthi, N. R. New Substituted 2-Aminomethyl-2-Oxo-2λ5-Perhydro-[1,3,2]Oxazaphospholo[3,4-a]Pyridine: Design, Synthesis and Antimicrobial Activity. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 794–798. DOI: 10.1080/10426507.2016.1277528.
  • Abdou, W. M.; Barghash, R. F.; Khidre, R. E. Antineoplastic Activity of Fused Nitrogen-Phosphorus Heterocycles and Derived Phosphonates. Monatsh. Chem. 2013, 144, 1233–1342. DOI: 10.1007/s00706-013-0950-6.
  • Yamada, M.; Asai, K.; Yamashita, J.; Suyama, T.; Niimi, T.; Maddali, K.; Fujie, M.; Nakamura, S.; Yamashita, M. Preparation and Characterization of Phospha Sugar Analogues, 2,3-Dibromo-3-Methyl-1-Phenylphospholane 1-Oxide Derivatives, as Novel Anticancer Agents. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 2286–2291. DOI: 10.1080/10426501003598622.
  • Gilard, V.; Martino, R.; Malet-Martino, M.; Niemeyer, U.; Pohl, J. Chemical Stability and Fate of the Cytostatic Drug Ifosfamide and Its N-Dechloroethylated Metabolites in Acidic Aqueous Solutions. J. Med. Chem. 1999, 42, 2542–2560. DOI: 10.1021/jm980587g.
  • Smith, B. R.; Eastman, C. M.; Njardarson, J. T. Beyond C, H, O, and N! Analysis of the Elemental Composition of U.S. FDA Approved Drug Architectures. J. Med. Chem. 2014, 57, 9764–9773. DOI: 10.1021/jm501105n.
  • Elliott, T. S.; Slowey, A.; Ye, Y. L.; Conway, S. J. The Use of Phosphonate Bioisosteres in Medicinal Chemistry and Chemical Biology. Med. Chem. Commun. 2012, 3, 735–751. DOI: 10.1039/c2md20079a.
  • Jockusch, S.; Tao, C.; Li, X.; Anderson, T. K.; Chien, M.; Kumar, S.; Russo, J. J.; Kirchdoerfer, R. N.; Ju, J. A Library of Nucleotide Analogues Terminate RNA Synthesis Catalyzed by Polymerases of Coronaviruses That Cause SARS and COVID-19. Antiviral. Res. 2020, 180, 104857. DOI: 10.1016/j.antiviral.2020.104857.
  • Aslam, N.; White, J. M.; Zafar, A. M.; Jabeen, M.; Ghafoor, A.; Sajjid, N.; Noreen, S.; Khan, M. A. 4H-Pyrano[2,3-c]Pyrazoles: A Review. Arkivoc 2018, 2018, 139–203. DOI: 10.24820/ark.5550190.p010.622.
  • Shahbazi, S.; Ghasemzadeh, M. A.; Shakib, P.; Zolfaghari, M. R.; Bahmani, M. Synthesis and Antimicrobial Study of 1,4-Dihydropyrano[2,3-c]Pyrazole Derivatives in the Presence of Amino-Functionalized Silica-Coated Cobalt Oxide Nanostructures as Catalyst. Polyhedron 2019, 170, 172–179. DOI: 10.1016/j.poly.2019.04.063.
  • Dandia, A.; Saini, D.; Bhaskaran, S.; Saini, D. K. Promoted Green Synthesis of Spiro[Pyrano[2,3-c]Pyrazoles] as Antioxidant Agents. Med. Chem. Res. 2014, 23, 725–734. DOI: 10.1007/s00044-013-0671-8.
  • Shamroukh, A. H.; Zaki, M. E. A.; Morsy, E. M. H.; Abdel-Motti, F. M.; Abdel-Megeid, F. M. E. Synthesis of Pyrazolo[4′,3′:5,6]Pyrano[2,3-d]Pyrimidine Derivatives for Antiviral Evaluation. Arch. Pharm. 2007, 340, 236–243. DOI: 10.1002/ardp.200700005.
  • Sun, X.; Zhang, L.; Gao, M.; Que, X.; Zhou, C.; Zhu, D.; Cai, Y. Nanoformulation of a Novel Pyrano[2,3-c]Pyrazole Heterocyclic Compound AMDPC Exhibits anti-Cancer Activity via Blocking the Cell Cycle through a P53-Independent Pathway. Molecules 2019, 24, 624–633. DOI: 10.3390/molecules24030624.
  • Ali, T. E.; Assiri, M. A.; El-Shaaer, H. M.; Fouda, A. M.; Hassan, M. M.; Hassanin, N. M. Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Phosphorus Halides: Synthesis of Some Novel Chromeno[2,3-d][1,3,2]Diazaphosphinines and Chromeno[4,3-c][1,2] Azaphosphole and Their Antioxidant and Cytotoxicity Properties. Heterocycles 2019, 98, 681–692. DOI: 10.3987/COM-19-14062.
  • Ali, T. E.; Assiri, M. A.; El-Shaaer, H. M.; Hassan, M. M.; Fouda, A. M.; Hassanin, N. M. Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Some Phosphorus Esters: Synthesis of Some Novel Chromenes Containing Phosphorus Heterocycles and Phosphonate Groups and Their Antioxidant and Cytotoxicity Properties. Synth. Commun. 2019, 49, 2983–2994. DOI: 10.1080/00397911.2019.1652323.
  • Hassanin, N. M.; Ali, T. E.; El-Shaaer, H. M.; Hassan, M. M. Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Phosphorus Sulfides: Synthesis of Novel 2-Sulfido-2,3-Dihydro-4H-Chromeno[2,3-d][1,3,2]Diazaphosphinines. Phosphorus, Sulfur Silicon Relat. Elem. 2018, 193, 651–655. DOI: 10.1080/10426507.2018.1487439.
  • Assiri, M. A.; Ali, T. E.; Hassanin, N. M.; Yahia, I. S.; Sakr, G. B. Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Phosphorus Isothiocyanates: First Synthesis of Novel Chromeno[2,3-d]Pyrimidinyl and Bis(Chromeno[2,3-d]Pyrimidinyl)Phosphines and Chromeno[2,3:4,5]Pyrimido[2,1-d][1,3,5,2]Triazaphosphinine. J. Heterocyclic Chem. 2019, 56, 1646–1650. DOI: 10.1002/jhet.3552.
  • Ali, T. E.; Assiri, M. A.; Hassanin, N. M.; Yahia, I. S.; Hussien, M. S. A Convenient Synthetic Route of Diethyl (4-Oxo-Chromeno[2,3-d] Pyrimidin-2(5)-yl)Phosphonates. J. Heterocyclic Chem. 2019, 56, 1684–1686. DOI: 10.1002/jhet.3550.
  • Kiyania, H.; Samimib, H. A.; Ghorbania, F.; Esmaielia, S. One-Pot, Four-Component Synthesis of Pyrano[2,3-c]Pyrazoles Catalyzed by Sodium Benzoate in Aqueous Medium. Curr. Chem. Lett. 2013, 2, 197–206. DOI: 10.5267/j.ccl.2013.07.002.
  • Sravya, G.; Suresh, G.; Zyryanov, G. V.; Balakrishna, A.; Reddy, N. B. K2CO3/Al2O3: An Efficient and Recyclable Catalyst for One-Pot, Three Components Synthesis of α-Amino-Phosphonates and Bioactivity Evaluation. Asian J. Chem. 2019, 31, 2383–2388. DOI: 10.14233/ajchem.2019.22194.
  • Abu-Shanab, F. A.; Mousa, S. A. S.; Eshak, E. A.; Sayed, A. Z.; Al-Harrasi, A. Dimethylformamide Dimethyl Acetal (DMFDMA) in Heterocyclic Synthesis: Synthesis of Polysubstituted Pyridines, Pyrimidines, Pyridazine and Their Fused Derivatives. Int. J. Org. Chem. 2011, 1, 207–214. DOI: 10.4236/ijoc.2011.14030.
  • Abdou, W. M.; Shaddy, A. A.; Khidre, R. E.; Awad, G. E. A. Synthesis and Antimicrobial Evaluation of Newly Synthesized N,S-Bisphosphonate Derivatives. J. Heterocyclic Chem. 2016, 53, 525–532. DOI: 10.1002/jhet.2306.
  • Dąbrowska, E.; Burzyńska, A.; Mucha, A.; Matczak-Jon, E.; Sawka-Dobrowolska, W.; Berlicki, Ł.; Kafarski, P. Insight into the Mechanism of Three Component Condensation Leading to Aminomethylenebisphosphonates. J. Organomet. Chem. 2009, 694, 3806–3813. DOI: 10.1016/j.jorganchem.2009.07.025.
  • Ali, T. E.; El-Edfawy, S. M. A Convenient Synthesis and Biological Evaluation of Some Novel Linear and Cyclic α-Aminophosphonic Acid Derivatives Containing a Quinazolinone Ring. Res. Chem. Intermed. 2016, 42, 1329–1347. DOI: 10.1007/s11164-015-2088-0.
  • Kozachenko, A. P.; Shablykin, O. V.; Gakh, A. A.; Rusanov, E. B.; Brovarets, V. S. Synthesis of New Heterocyclic System of 4,5,7,8-Tetrahydroimidazo[1,2-c][1,3]Thiazolo[4,5-e][1,3,2] Diazaphosphinine Starting from 2-Aroylamino-3,3-Dichloroacrylonitrile. Heteroatom Chem. 2010, 21, 492–498. DOI: 10.1002/hc.20638.
  • Ali, T. E.; Hassan, M. M. Reaction of 2-Cyano-3-(4-Oxo-4H-Chromen-3-yl)Prop-2-Enamide with Some Phosphorus Reagents: Synthesis of Some Novel Diethyl Phosphonates, 1,2,3-Diazaphosphinanes, 1,2,3-Thiazaphosphinine and 1,2-Azaphospholes Bearing a Chromone Ring. Res. Chem. Intermed. 2018, 44, 173–189. DOI: 10.1007/s11164-017-3096-z.
  • Ozturk, T.; Ertas, E.; Mert, O. ChemInform Abstract: A Berzelius Reagent, Phosphorus Decasulfide (P4S10), in Organic Syntheses. Chem. Rev. 2010, 110, 3419–3478. DOI: 10.1021/cr900243d.
  • Khalladi, K.; Touil, S. Synthesis of Novel Fused Thienodiazaphosphorine Derivatives from 2-Amino-3-Cyanothiophenes and Lawesson’s Reagent. J. Sulfur Chem. 2012, 33, 27–32. DOI: 10.1080/17415993.2011.639021.
  • Younes, S. H. H.; Mohamed, S. K.; Albayati, M. R. Studies on Organophosphorus Compounds. Part 1: Synthesis and in Vitro Antimicrobial Activity of Some New Pyrimido[5′,4′:5,6]Pyrano[2,3-d][1,3,2]Thiazaphosphinine Compounds. Arch. Pharm. Chem. Life Sci. 2013, 346, 727–732. DOI DOI: 10.1002/ardp.201300171..
  • Ali, T. E.; Assiri, M. A.; Abdel-Kariem, S. M.; Yahia, I. S. Facile Synthesis of Novel 6-Methyl-5-Phenyl-2-Sulfido-1,2,3,5-Tetrahydro-4H-[1,2]Oxazolo[4′,5′:5,6]Pyrano[2,3-d][1,3,2] Diazaphosphinines. J. Sulfur Chem. 2018, 39, 472–482. DOI: 10.1080/17415993.2018.1455837.
  • Ali, T. E. Synthesis of Some New 1,3,2-Oxazaphosphinine, 1,3,2-Diazaphosphinine, Acyclic, and/or Cyclic α-Aminophosphonate Derivatives Containing the Chromone Moiety. Phosphorus, Sulfur Silicon Relat. Elem. 2009, 185, 88–96. DOI: 10.1080/10426500802713309.
  • Rahman, A. U.; Choudhary, M. I.; Thomsen, W. J. Bioassay Techniques for Drug Development; Harwood Academic Publishers: Amsterdam, The Netherlands, 2001.
  • Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. DOI: 10.1016/j.jpha.2015.11.005.
  • Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobsen, L. B.; Nichols, D. E.; McLaughlin, J. L. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Med. 1982, 45, 31–34. DOI: 10.1055/s-2007-971236..
  • Finney, D. J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1972.
  • Kato, K.; Terao, S.; Shimamoto, N.; Hirata, M. Studies on Scavengers of Active Oxygen Species. 1. Synthesis and Biological Activity of 2-O-Alkylascorbic Acids. J. Med. Chem. 1988, 31, 793–798. DOI: 10.1021/jm00399a019..
  • Siddhuraju, P.; Becker, K. The Antioxidant and Free Radical Scavenging Activities of Processed Cowpea (Vigna unguiculata (L.) Walp.) Seed Extracts. Food Chem. 2007, 101, 10–19. DOI: 10.1016/j.foodchem.2006.01.004.
  • Winston, G. W.; Regoli, F.; Dugas, A. J.; Fong, J. H.; Blanchard, K. A. A. Rapid Gas Chromatographic Assay for Determining Oxyradical Scavenging Capacity of Antioxidants and Biological Fluids. Free Radic. Biol. Med. 1998, 24, 480–493. DOI: 10.1016/s0891-5849(97)00277-3..
  • Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. DOI: 10.1093/jnci/82.13.1107.
  • Albright, F.; Stephenson, R. A.; Agarwal, N.; Teerlink, C. C.; Lowrance, W. T.; Farnham, J. M.; Albright, L. A. Prostate Cancer Risk Prediction Based on Complete Prostate Cancer Family History. Prostate 2015, 75, 390–398. DOI: 10.1002/pros.22925..
  • Liu, E. H.; Qi, L. W.; Wu, Q.; Peng, Y. B.; Li, P. Anticancer Agents Derived from Natural Products. Mini Rev. Med. Chem. 2009, 9, 1547–1555. DOI: 10.2174/138955709790361520..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.