Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 17
249
Views
2
CrossRef citations to date
0
Altmetric
Articles

Hydrophilic nickel phosphate nanoparticles: An efficient catalyst for the hydrogenation of nitroarenes

&
Pages 2613-2627 | Received 11 Jan 2021, Published online: 05 Jul 2021

References

  • Lauwiner, M.; Rys, P.; Wissmann, J. Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst. I. The Reduction of Monosubstituted Nitrobenzenes with Hydrazine Hydrate in the Presence of Ferrihydrite. Appl. Catal. A-Gen. 1998, 172, 141–148. DOI: 10.1016/S0926-860X(98)00110-0.
  • Wisniak, J.; Klein, M. Reduction of Nitrobenzene to Aniline. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 44–50. DOI: 10.1021/i300013a009.
  • Agnieszka, K.-S.; Cedrowski, J.; Kasperska, P.; Litwinienko, G. Reduction of Nitrobenzene to Aniline by CO/H2O in the Presence of Palladium Nanoparticles. Catalysts 2019, 9, 404. DOI: 10.3390/catal9050404.
  • Daems, N.; Wouters, J.; Goethem, C. V.; Baert, K.; Poleunis, C.; Delcorte, A.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Selective Reduction of Nitrobenzene to Aniline over Electrocatalysts Based on Nitrogen-Doped Carbons Containing Non-Noble Metals. Appl. Catal. B-Environ. 2018, 226, 509–522. DOI: 10.1016/j.apcatb.2017.12.079.
  • Alonso, F.; Riente, P.; Yus, M. Nickel Nanoparticles in Hydrogen Transfer Reactions. Acc. Chem. Res. 2011, 44, 379–391. DOI: 10.1021/ar1001582.
  • Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chem. Rev. 2019, 119, 2611–2680. DOI: 10.1021/acs.chemrev.8b00547.
  • Pradhan, N.; Pal, A.; Pal, T. Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles. Langmuir. 2001, 17, 1800–1802. DOI: 10.1021/la000862d.
  • Zhang, J. Catalytic Transfer Hydrogenolysis as an Efficient Route in Cleavage of Lignin and Model Compounds. Green Energy Environ. 2018, 3, 328–334. DOI: 10.1016/j.gee.2018.08.001.
  • Saha, A.; Ranu, B. Highly Chemoselective Reduction of Aromatic Nitro Compounds by Copper Nanoparticles/Ammonium Formate. J. Org. Chem. 2008, 73, 6867–6870. DOI: 10.1021/jo800863m.
  • Liu, H.; Yang, Q. Feasible Synthesis of Etched Gold Nanoplates with Catalytic Activity and SERS Properties. CrystEngComm. 2011, 13, 5488–5494. DOI: 10.1039/c1ce05351e.
  • Vernekar, A. A.; Patil, S.; Bhat, C.; Tilve, S. G. Magnetically Recoverable Catalytic Co–Co2B Nanocomposites for the Chemoselective Reduction of Aromatic Nitro Compounds. RSC Adv. 2013, 3, 13243–13250. DOI: 10.1039/c3ra41090k.
  • Raghasudha, M. Int. J. Modern Chem. Appl. Sci 2016, 3, 306–308. http://www.ijcasonline.com/images/Green%20synthesis%20of%20silver%20nano%20particles%20and%20study%20of%20catalytic%20activity.pdf.
  • Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D.-Y.; Ahn, H. C.; Choi, K.; Furukawa, H.; Kim, J. Catalytic Nickel Nanoparticles Embedded in a Mesoporous Metal-Organic Framework. Chem. Commun. (Camb). 2010, 46, 3086–3088. DOI: 10.1039/C000775G.
  • Rathore, P. S.; Patidar, R.; Rathore, S.; Thakore, S. Nickel Nanoparticles as Efficient Catalyst for Electron Transfer Reactions. Catal. Lett. 2014, 144, 439–446. DOI: 10.1007/s10562-013-1168-2.
  • Wang, J.; Yuan, Z.; Nie, R.; Hou, Z.; Zheng, X. Hydrogenation of Nitrobenzene to Aniline over Silica Gel Supported Nickel Catalysts. Ind. Eng. Chem. Res. 2010, 49, 4664–4669. DOI: 10.1021/ie1002069.
  • Petkar, D. R.; Kadu, B. S.; Chikate, R. C. Highly Efficient and Chemoselective Transfer Hydrogenation of Nitroarenes at Room Temperature over Magnetically Separable Fe–Ni Bimetallic Nanoparticles. RSC Adv. 2014, 4, 8004–8010. DOI: 10.1039/c3ra45787g.
  • Vijaykumar, G.; Mandal, S. K. An Abnormal N-Heterocyclic Carbene Based Nickel Complex for Catalytic Reduction of Nitroarenes. Dalton Trans. 2016, 45, 7421–7426. DOI: 10.1039/C6DT00470A.
  • Varkolu, M.; Velpula, V.; Pochamoni, P.; Muppala, A. R.; Burri, D. R.; Kamaraju, S. R. R. Nitrobenzene Hydrogenation over Ni/TiO2 Catalyst in Vapour Phase at Atmospheric Pressure: influence of Preparation Method. Appl. Petrochem. Res. 2016, 6, 15–23. DOI: 10.1007/s13203-015-0115-0.
  • Jiang, Y.; Li, X.; Qin, Z.; Ji, H. Preparation of Ni/Bentonite Catalyst and Its Applications in the Catalytic Hydrogenation of Nitrobenzene to Aniline. Chin. J. Chem. Eng. 2016, 24, 1195–1200. DOI: 10.1016/j.cjche.2016.04.030.
  • Fratoddi, I. Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives. Nanomaterials 2017, 8, 11. DOI: 10.3390/nano8010011.
  • Rizvi, S. A. A.; Saleh, A. M. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm J. 2018, 26, 64–70. DOI: 10.1016/j.jsps.2017.10.012.
  • Molina, R. H.; Munoz, J. L. S.; Leal, M. I. D.; Reina, T. R.; Ivanova, S.; Gallego, M. A. C.; Odriozola, J. A. Carbon Supported Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol. Front. Chem. 2019, 7, 548. DOI: 10.3389/fchem.2019.00548.
  • Mourdikoudis, S.; Altantzis, T.; Liz-Marzán, L. M.; Bals, S.; Pastoriza-Santos, I.; Pérez-Juste, J. Hydrophilic Pt Nanoflowers: Synthesis, Crystallographic Analysis and Catalytic performance. CrystEngComm 2016, 18, 3422–3427. DOI: 10.1039/C6CE00039H.
  • Bhanja, P.; Na, J.; Jing, T.; Lin, J.; Wakihara, T.; Bhaumik, A.; Yamauchi, Y. Nanoarchitectured Metal Phosphates and Phosphonates: A New Material Horizon toward Emerging Applications. Chem. Mater. 2019, 31, 5343–5362. DOI: 10.1021/acs.chemmater.9b01742.
  • Loher, S.; Stark, W. J.; Maciejewski, M.; Baiker, A.; Pratsinis, S. E.; Reichardt, D.; Maspero, F.; Krumeich, F.; Gunther, D. Fluoro-Apatite and Calcium Phosphate Nanoparticles by Flame Synthesis. Chem. Mater. 2005, 17, 36–42. DOI: 10.1021/cm048776c.
  • Liu, G.; Wu, H.; Wang, J.; Lin, Y. Apoferritin-Templated Synthesis of Metal Phosphate Nanoparticle Labels for Electrochemical Immunoassay. Small 2006, 2, 1139–1143. DOI: 10.1002/smll.200600206.
  • Al-Omair, M. A.; Touny, A. H.; Saleh, M. M. Reflux-Based Synthesis and Electrocatalytic Characteristics of Nickel Phosphate Nanoparticles. J. Power Sources 2017, 342, 1032–1039. DOI: 10.1016/j.jpowsour.2016.09.079.
  • Samadi-Maybodi, A.; Nejad-Darzi, S. K. H.; Ganjali, M. R.; Ilkhani, H. Application of Nickel Phosphate Nanoparticles and VSB-5 in the Modification of Carbon Paste Electrode for Electrocatalytic Oxidation of Methanol. J. Solid State Electrochem. 2013, 17, 2043–2048. DOI: 10.1007/s10008-013-2059-6.
  • Sharma, P.; Radhakrishnan, S.; Khil, M.-S.; Kim, H.-Y.; Kim, B.-S. Simple Room Temperature Synthesis of Porous Nickel Phosphate Foams for Electrocatalytic Ethanol Oxidation. J. Electroanal. Chem. 2018, 808, 236–244. DOI: 10.1016/j.jelechem.2017.12.025.
  • Yu, J.; Wang, A.; Tan, J.; Li, X.; Bokhoven, J. A. V.; Hu, Y. Synthesis of Novel Nanotubular Mesoporous Nickel Phosphates with High Performance in Epoxidation. J. Mater. Chem. 2008, 18, 3601–3607. DOI: 10.1039/b805843a.
  • Song, X.; Sun, Q.; Gao, L.; Chen, W.; Wu, Y.; Li, Y.; Mao, L.; Yang, J.-H. Nickel Phosphate as Advanced Promising Electrochemical Catalyst for the Electro-Oxidation of Methanol. Int. J. Hydrog. Energy 2018, 43, 12091–12102. DOI: 10.1016/j.ijhdene.2018.04.165.
  • Kadam, H. K.; Tilve, S. G. Advancement in Methodologies for Reduction of Nitroarenes. RSC Adv. 2015, 5, 83391–83407. DOI: 10.1039/C5RA10076C.
  • Sarmah, P. P.; Dutta, D. K. Chemoselective Reduction of a Nitro Group through Transfer Hydrogenation Catalysed by Ru0-Nanoparticles Stabilized on Modified Montmorillonite Clay. Green Chem. 2012, 14, 1086–1093. DOI: 10.1039/c2gc16441h.
  • Gawande, M. B.; Rathi, A. K.; Branco, P. S.; Nogueira, I. D.; Velhinho, A.; Shrikhande, J. J.; Indulkar, U. U.; Jayaram, R. V.; Ghumman, A. A.; Bundaleski, N.; Teodoro, O. M. N. D. Regio- and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic Ferrite-Nickel Nanoparticles (Fe(3)O(4)-Ni) by Using Glycerol as a Hydrogen Source. Chemistry 2012, 18, 12628–12632. DOI: 10.1002/chem.201202380.
  • Hout, S. I. E.; Sheikh, S. M. E.; Hassan, H. M. A.; Harraz, F. A.; Ibrahim, I. A.; Sharkawy, E. A. E. A Green Chemical Route for Synthesis of Graphene Supported Palladium Nanoparticles: A Highly Active and Recyclable Catalyst for Reduction of Nitrobenzene. Appl. Catal. A-Gen 2015, 503, 176–185. DOI: 10.1016/j.apcata.2015.06.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.