Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 18
164
Views
2
CrossRef citations to date
0
Altmetric
Articles

Palladium-catalyzed oxidative annulation of N-(8-quinolinyl) aryl carboxamides with 1-aryl-2-tosyloxy ethanones

, , , &
Pages 2796-2807 | Received 27 Feb 2021, Published online: 30 Jul 2021

References

  • Ricci, A. Ed. Amino Group Chemistry: From Synthesis to the Life Sciences; Wiley-VCH: Weinheim, 2008.
  • Hutchinson, J. H.; Cook, J. J.; Brashear, K. M.; Breslin, M. J.; Glass, J. D.; Gould, R. J.; Halczenko, W.; Holahan, M. A.; Lynch, R. J.; Sitko, G. R.; et al. Non-Peptide Glycoprotein IIb/IIIa Antagonists. 11. Design and in vivo Evaluation of 3,4-Dihydro-1 (1H)-Isoquinolinone-Based Antagonists and Ethyl Ester Prodrugs. J. Med. Chem. 1996, 39, 4583–4591. DOI: 10.1021/jm9604787.
  • Matsui, T.; Sugiura, T.; Nakai, H.; Iguchi, S.; Shigeoka, S.; Takada, H.; Odagaki, Y.; Nagao, Y.; Ushio, Y.; Ohmoto, K. Novel 5-HT3 Antagonists. Isoquinolinones and 3-Aryl-2-Pyridones. J. Med. Chem. 1992, 35, 3307–3319. DOI: 10.1021/jm00096a001.
  • Jeong, I. Y.; Nagao, Y. Novel Synthesis of 4-Oxo-1-Isoquinolone Derivatives Utilizing Inter- and Intramolecular Tandem Carbopalladation-Heterocyclic Ring Expansion. Tetrahedron Lett. 1998, 39, 8677–8680. DOI: 10.1016/S0040-4039(98)01870-X.
  • Sunderland, P. T.; Dhami, A.; Mahon, M. F.; Jones, L. A.; Tully, S. R.; Lloyd, M. D.; Thompson, A. S.; Javaid, H.; Martin, N. M. B.; Threadgill, M. D. Synthesis of 4-Alkyl-, 4-Aryl- and 4-Arylamino-5-Aminoisoquinolin-1-Ones and Identification of a New PARP-2 Selective Inhibitor. Org. Biomol. Chem. 2011, 9, 881–891. DOI: 10.1039/c0ob00665c.
  • Chao, Q.; Deng, L.; Shih, H.; Leoni, L. M.; Genini, D.; Carson, D. A.; Cottam, H. B. Substituted Isoquinolines and Quinazolines as Potential Antiinflammatory Agents. Synthesis and Biological Evaluation of Inhibitors of Tumor Necrosis Factor Alpha. J. Med. Chem. 1999, 42, 3860–3873. DOI: 10.1021/jm9805900.
  • Torisawa, Y.; Aki, S.; Minamikawa, J-i. Conversion of Indanone Oximes into Isocarbostyrils. Bioorg. Med. Chem. Lett. 2007, 17, 453–455. DOI: 10.1016/j.bmcl.2006.10.022.
  • Ng, P. Y.; Tang, Y.; Knosp, W. M.; Stadler, H. S.; Shaw, J. T. Synthesis of Diverse Lactam Carboxamides Leading to the Discovery of a New Transcription-Factor Inhibitor. Angew. Chem. Int. Ed. Engl. 2007, 46, 5352–5355. DOI: 10.1002/anie.200700762.
  • Pettit, G. R.; Meng, Y.; Herald, D. L.; Graham, K. A. N.; Pettit, R. K.; Doubek, D. L. Isolation and Structure of Ruprechstyril from Ruprechtia tangarana. J. Nat. Prod. 2003, 66, 1065–1069. DOI: 10.1021/np0300986.
  • Mori, M.; Chiba, K.; Ban, Y. Reactions and Syntheses with Organometallic Compounds. 7. Synthesis of Benzolactams by Palladium-Catalyzed Amidation. J. Org. Chem. 1978, 43, 1684–1687. DOI: 10.1021/jo00403a013.
  • Rigby, J. H.; Maharoof, U. S. M.; Mateo, M. E. Studies on the Narciclasine Alkaloids: Total Synthesis of (+)-Narciclasine and (+)-Pancratistatin. J. Am. Chem. Soc. 2000, 122, 6624–6628. DOI: 10.1021/ja000930i.
  • Liu, C. C.; Parthasarathy, K.; Cheng, C. H. Synthesis of Highly Substituted Isoquinolone Derivatives by Nickel-Catalyzed Annulation of 2-Halobenzamides with Alkynes. Org. Lett. 2010, 12, 3518–3521. DOI: 10.1021/ol101371c.
  • Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. An Efficient One-Pot Copper-Catalyzed Approach to Isoquinolin-1(2H)-One Derivatives. Org. Lett. 2009, 11, 2469–2472. DOI: 10.1021/ol900847t.
  • Shi, Y.; Zhu, X.; Mao, H.; Hu, H.; Zhu, C.; Cheng, Y. Synthesis of Functionalized Isoquinolin-1(2H)-Ones by Copper-Catalyzed α-Arylation of Ketones with 2-Halobenzamides. Chemistry 2013, 19, 11553–11557. DOI: 10.1002/chem.201301621.
  • Huang, C. Y.; Kavala, V.; Kuo, C. W.; Konala, A.; Yang, T. H.; Yao, C. F. Synthesis of Biologically Active Indenoisoquinoline Derivatives via a One-Pot Copper(II)-Catalyzed Tandem Reaction. J. Org. Chem. 2017, 82, 1961–1968. DOI: 10.1021/acs.joc.6b02814.
  • (a) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chem. Rev. 2010, 110, 1147–1169. DOI: 10.1021/cr900184e. (b) Zhao, D.; You, J.; Hu, C. Recent Progress in Coupling of Two Heteroarenes. Chemistry 2011, 17, 5466–5492. DOI: 10.1002/chem.201003039. (c) Sun, C. L.; Li, B. J.; Shi, Z. J. Direct C-H Transformation via Iron Catalysis. Chem. Rev. 2011, 111, 1293–1314. DOI: 10.1021/cr100198w. (d) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Recent Advances in the Transition Metal-Catalyzed Twofold Oxidative C-H Bond Activation Strategy for C-C and C-N Bond Formation. Chem. Soc. Rev. 2011, 40, 5068–5083. DOI: 10.1039/c1cs15082k. (e) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Beyond Directing Groups: transition-Metal-Catalyzed C-H Activation of Simple Arenes. Angew. Chem. Int. Ed. Engl. 2012, 51, 10236–10254. DOI: 10.1002/anie.201203269. (f) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Recent Advances in Transition-Metal Catalyzed Reactions Using Molecular Oxygen as the Oxidant. Chem. Soc. Rev. 2012, 41, 3381–3430. DOI: 10.1039/c2cs15224j. (g) Song, G.; Wang, F.; Li, X. C–C, C–O and C–N Bond Formation via Rhodium(III)-Catalyzed Oxidative C-H Activation. Chem. Soc. Rev. 2012, 41, 3651–3678. DOI: 10.1039/c2cs15281a. (h) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Ruthenium(II)-Catalyzed C-H Bond Activation and Functionalization. Chem. Rev. 2012, 112, 5879–5918. DOI: 10.1021/cr300153j. (i) Wencel-Delord, J.; Glorius, F. C-H Bond Activation Enables the Rapid Construction and Late-Stage Diversification of Functional Molecules. Nat. Chem. 2013, 5, 369–375. DOI: 10.1038/nchem.1607. (j) Louillat, M. L.; Patureau, F. W. Oxidative C-H Amination Reactions. Chem. Soc. Rev. 2014, 43, 901–910. DOI: 10.1039/c3cs60318k. (k) Yang, L.; Huang, H. Transition-Metal-Catalyzed Direct Addition of Unactivated C-H Bonds to Polar Unsaturated Bonds. Chem. Rev. 2015, 115, 3468–3517. DOI: 10.1021/cr500610p. (l) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition Metal-Catalyzed C–H Bond Functionalizations by the Use of Diverse Directing Groups. Org. Chem. Front. 2015, 2, 1107–1295. DOI: 10.1039/C5QO00004A.
  • (a) Allu, S.; Swamy, K. C. K. Ruthenium-Catalyzed Synthesis of Isoquinolones with 8-Aminoquinoline as a Bidentate Directing Group in C-H Functionalization. J. Org. Chem. 2014, 79, 3963–3972. DOI: 10.1021/jo500424p. (b) Yu, D. G.; de Azambuja, F.; Gensch, T.; Daniliuc, C. G.; Glorius, F. The C-H Activation/1,3-Diyne Strategy: highly Selective Direct Synthesis of Diverse Bisheterocycles by Rh(III) Catalysis. Angew. Chem. Int. Ed. Engl. 2014, 53, 9650–9654. DOI: 10.1002/anie.201403782. (c) Grigorjeva, L.; Daugulis, O. Cobalt-Catalyzed, Aminoquinoline-Directed C(sp²)-H Bond Alkenylation by Alkynes. Angew. Chem. Int. Ed. Engl. 2014, 53, 10209–10212. DOI: 10.1002/anie.201404579.
  • (a) Thrimurtulu, N.; Dey, A.; Maiti, D.; Volla, C. M. R. Cobalt-Catalyzed sp(2)-C-H Activation: Intermolecular Heterocyclization with Allenes at Room Temperature. Angew. Chem. Int. Ed. Engl. 2016, 55, 12361–12365. DOI: 10.1002/anie.201604956. (b) Li, T.; Zhang, C.; Tan, Y.; Pan, W.; Rao, Y. Cobalt-Catalyzed C–H Activation and Regioselective Intermolecular Annulation with Allenes. Org. Chem. Front. 2017, 4, 204–209. DOI: 10.1039/C6QO00567E.
  • Zhang, T.; Lin, J.; Li, Q.; Kang, J.; Pan, J.; Hou, S.; Chen, C.; Zhang, S. Copper-Catalyzed Selective ortho -C–H/N–H Annulation of Benzamides with Arynes: Synthesis of Phenanthridinone Alkaloids. Org. Lett. 2017, 19, 1764–1767. DOI: 10.1021/acs.orglett.7b00442.
  • Takamatsu, K.; Hirano, K.; Miura, M. Copper-Mediated Decarboxylative Coupling of Benzamides with ortho-Nitrobenzoic Acids by Directed C-H Cleavage. Angew. Chem. Int. Ed. Engl. 2017, 56, 5353–5357. DOI: 10.1002/anie.201701918.
  • Xie, C.; Dai, Z.; Niu, Y.; Ma, C. Cascade One-Pot Method to Synthesize Isoquinolin-1(2H)-Ones with α-Bromo Ketones and Benzamides via Pd-Catalyzed C-H Activation. J. Org. Chem. 2018, 83, 2317–2323. DOI: 10.1021/acs.joc.7b03224.
  • Matsubara, T.; Ilies, L.; Nakamura, E. Oxidative C-H Activation Approach to Pyridone and Isoquinolone through an Iron-Catalyzed Coupling of Amides with Alkynes. Chem. Asian J. 2016, 11, 380–384. DOI: 10.1002/asia.201501095.
  • (a) He, Z.; Huang, Y. Diverting C–H Annulation Pathways: Nickel-Catalyzed Dehydrogenative Homologation of Aromatic Amides. ACS Catal. 2016, 6, 7814–7823. DOI: 10.1021/acscatal.6b02477. (b) Honeycutt, A. P.; Hoover, J. M. Nickel-Catalyzed Oxidative Decarboxylative Annulation for the Synthesis of Heterocycle-Containing Phenanthridinones. Org. Lett. 2018, 20, 7216–7219. DOI: 10.1021/acs.orglett.8b03144. (c) Capdevila, L.; Meyer, T. H.; Roldán-Gómez, S.; Luis, J. M.; Ackermann, L.; Ribas, X. Chemodivergent Nickel(0)-Catalyzed Arene C–F Activation with Alkynes: Unprecedented C–F/C–H Double Insertion. ACS Catal. 2019, 9, 11074–11081. DOI: 10.1021/acscatal.9b03620.
  • (a) Hao, X. Q.; Du, C.; Zhu, X.; Li, P. X.; Zhang, J. H.; Niu, J. L.; Song, M. P. Cobalt(II)-Catalyzed Decarboxylative C-H Activation/Annulation Cascades: Regioselective Access to Isoquinolones and Isoindolinones. Org. Lett. 2016, 18, 3610–3613. DOI: 10.1021/acs.orglett.6b01632. (b) Kalsi, D.; Dutta, S.; Barsu, N.; Rueping, M.; Sundararaju, B. Room-Temperature C–H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catal. 2018, 8, 8115–8120. DOI: 10.1021/acscatal.8b02118. (c) Min, X. T.; Ji, D. W.; Zheng, H.; Chen, B. Z.; Hu, Y. C.; Wan, B.; Chen, Q. A. Cobalt-Catalyzed Regioselective Carboamidation of Alkynes with Imides Enabled by Cleavage of C-N and C-C Bonds. Org. Lett. 2020, 22, 3386–3391. DOI: 10.1021/acs.orglett.0c00875.
  • Min, X. T.; Ji, D. W.; Guan, Y. Q.; Guo, S. Y.; Hu, Y. C.; Wan, B.; Chen, Q. A. Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angew. Chem. Int. Ed. Engl. 2021, 60, 1583–1587. DOI: 10.1002/anie.202010782.
  • (a) Tian, C.; Massignan, L.; Meyer, T. H.; Ackermann, L. Electrochemical C-H/N-H Activation by Water-Tolerant Cobalt Catalysis at Room Temperature. Angew. Chem. Int. Ed. Engl. 2018, 57, 2383–2387. DOI: 10.1002/anie.201712647. (b) Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A. Cobalt-Catalyzed Electrooxidative C-H/N-H [4 + 2] Annulation with Ethylene or Ethyne. Nat. Commun. 2018, 9, 798–805. DOI: 10.1038/s41467-018-03246-4.
  • Yu, D. G.; de Azambuja, F.; Glorius, F. α-MsO/TsO/Cl Ketones as Oxidized Alkyne Equivalents: redox-Neutral Rhodium(III)-Catalyzed C-H Activation for the Synthesis of N-Heterocycles. Angew. Chem. Int. Ed. Engl. 2014, 53, 2754–2758. DOI: 10.1002/anie.201310272.
  • For spectra, see SI file.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.