Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 9-10
214
Views
1
CrossRef citations to date
0
Altmetric
Articles

A solvent-free synthesis of 4-aryl-NH-1,2,3-triazoles from ketones utilizing diphenyl phosphorazidate

, , , , &
Pages 1326-1335 | Received 29 Mar 2022, Published online: 20 Jun 2022

References

  • Dehaen, W.; Bakulev, V. A. (Eds.); Chemistry of 1,2,3-Triazoles; Springer international Publishing: Switzerland, 2015.
  • (a) Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A. M. 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, through 1,3-Dipolar Cycloadditions. Eur. J. Org. Chem. 2014, 2014, 3289–3306. DOI: 10.1002/ejoc.201301695. (b) Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-Triazole Ring as a Bioisostere in Medicinal Chemistry. Drug Discov. Today. 2017, 22, 1572–1581. DOI: 10.1016/j.drudis.2017.05.014. (c) Malik, M. S.; Ahmed, S. A.; Althagafi, I. I.; Ansari, M. A.; Kamal, A. Application of Triazoles as Bioisosteres and Linkers in the Development of Microtubule Targeting Agents. RSC Med. Chem. 2020, 11, 327–348. DOI: 10.1039/C9MD00458K.
  • (a) Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A. Click Chemistry Reactions in Medicinal Chemistry: Applications of the 1,3-Dipolar Cycloaddition between Azides and Alkynes. Med. Res. Rev. 2008, 28, 278–308. DOI: 10.1002/med.20107. (b) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. DOI: 10.1002/asia.201100432. (c) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click Chemistry for Drug Development and Diverse Chemical-Biology Applications. Chem. Rev. 2013, 113, 4905–4979. DOI: 10.1021/cr200409f.
  • (a) Kamal, A.; Shankaraiah, N.; Devaiah, V.; Reddy, K. L.; Juvekar, A.; Sen, S.; Kurian, N.; Zingde, S. Synthesis of 1,2,3-Triazole-Linked Pyrrolobenzodiazepine Conjugates Employing ‘Click’ Chemistry: DNA-Binding Affinity and Anticancer Activity. Bioorg. Med. Chem. Lett. 2008, 18, 1468–1473. DOI: 10.1016/j.bmcl.2007.12.063. (b) Demchuk, D. V.; Samet, A. V.; Chernysheva, N. B.; Ushkarov, V. I.; Stashina, G. A.; Konyushkin, L. D.; Raihstat, M. M.; Firgang, S. I.; Philchenkov, A. A.; Zavelevich, M. P.; et al. Synthesis and Antiproliferative Activity of Conformationally Restricted 1,2,3-Triazole Analogues of Combretastatins in the Sea Urchin Embryo Model and against Human Cancer Cell Lines. Bioorg. Med. Chem. 2014, 22, 738–755. DOI: 10.1016/j.bmc.2013.12.015. (c) Penthala, N. R.; Madhukuri, L.; Thakkar, S.; Madadi, N. R.; Lamture, G.; Eoff, R. L.; Crooks, P. A. Synthesis and anti-Cancer Screening of Novel Heterocyclic-(2H)-1,2,3-Triazoles as Potential anti-Cancer Agents. Med. Chem. Commun. 2015, 6, 1535–1543. DOI: 10.1039/C5MD00219B. (d) Xu, Z.; Zhao, S.-J.; Liu, Y. 1,2,3-Triazole-Containing Hybrids as Potential Anticancer Agents: Current Developments, Action Mechanisms and Structure-Activity Relationships. Eur. J. Med. Chem. 2019, 183, 111700. DOI: 10.1016/j.ejmech.2019.111700. (e) Amdouni, H.; Robert, G.; Driowya, M.; Furstoss, N.; Métier, C.; Dubois, A.; Dufies, M.; Zerhouni, M.; Orange, F.; Lacas-Gervais, S.; et al. In Vitro and In Vivo Evaluation of Fully Substituted (5-(3-Ethoxy-3-Oxopropynyl)-4-(Ethoxycarbonyl)-1,2,3-Triazolyl-Glycosides as Original Nucleoside Analogues to Circumvent Resistance in Myeloid Malignancies. J. Med. Chem. 2017, 60, 1523–1533. DOI: 10.1021/acs.jmedchem.6b01803. (f) Alaoui, S.; Dufies, M.; Driowya, M.; Demange, L.; Bougrin, K.; Robert, G.; Auberger, P.; Pagès, G.; Benhida, R. Synthesis and anti-Cancer Activities of New Sulfonamides 4-Substituted-Triazolyl Nucleosides. Bioorg. Med. Chem. Lett. 2017, 27, 1989–1992. DOI: 10.1016/j.bmcl.2017.03.018.
  • (a) Baures, P. W. Heterocyclic HIV-1 Protease Inhibitors. Org. Lett. 1999, 1, 249–252. DOI: 10.1021/ol990586y. (b) Saito, Y.; Escuret, V.; Durantel, D.; Zoulim, F.; Schinazi, R. F.; Agrofoglio, L. A. Synthesis of 1,2,3-Triazolo-Carbanucleoside Analogues of Ribavirin Targeting an HCV in Replicon. Bioorg. Med. Chem. 2003, 11, 3633–3639. DOI: 10.1016/S0968-0896(03)00349-3. (c) Whiting, M.; Tripp, J. C.; Lin, Y.-C.; Lindstrom, W.; Olson, A. J.; Elder, J. H.; Sharpless, K. B.; Fokin, V. V. Rapid Discovery and Structure-Activity Profiling of Novel Inhibitors of Human Immunodeficiency Virus Type 1 Protease Enabled by the Copper(I)-Catalyzed Synthesis of 1,2,3-Triazoles and Their Further Functionalization. J. Med. Chem. 2006, 49, 7697–7710. DOI: 10.1021/jm060754+. (d) Olomola, T. O.; Klein, R.; Lobb, K. A.; Sayed, Y.; Kaye, P. T. Towards the Synthesis of Coumarin Derivatives as Potential Dual-Action HIV-1 Protease and Reverse Transcriptase Inhibitors. Tetrahedron Lett. 2010, 51, 6325–6328. DOI: 10.1016/j.tetlet.2010.09.121.
  • (a) Buckle, D. R.; Smith, H.; Spicer, B. A.; Tedder, J. M. Studies on v-Triazoles. 9. Antiallergic 4,9-Dihydro-4,9-Dioxo-1H-Naphtho[2,3-d]-v-Triazoles. J. Med. Chem. 1983, 26, 714–719. DOI: 10.1021/jm00359a016. (b) Buckle, D. R.; Rockell, C. J.; Smith, H.; Spicer, B. A. Studies on 1,2,3-Triazoles. 10. Synthesis and Antiallergic Properties of 9-Oxo-1H,9H-Benzothiopyrano[2,3-d]-1,2,3-Triazoles and Their S-Oxides. J. Med. Chem. 1984, 27, 223–227. DOI: 10.1021/jm00368a021.
  • (a) Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. Identification of 4-Substituted 1,2,3-Triazoles as Novel Oxazolidinone Antibacterial Agents with Reduced Activity against Monoamine Oxidase A. J. Med. Chem. 2005, 48, 499–506. DOI: 10.1021/jm0400810. (b) Holla, B. S.; Mahalinga, M.; Karthikeyan, M. S.; Poojary, B.; Akberali, P. M.; Kumari, N. S. Synthesis, Characterization and Antimicrobial Activity of Some Substituted 1,2,3-Triazoles. Eur. J. Med. Chem. 2005, 40, 1173–1178. DOI: 10.1016/j.ejmech.2005.02.013. (c) Reck, F.; Zhou, F.; Eyermann, C. J.; Kern, G.; Carcanague, D.; Ioannidis, G.; Illingworth, R.; Poon, G.; Gravestock, M. B. Novel Substituted (Pyridin-3-yl)Phenyloxazolidinones: Antibacterial Agents with Reduced Activity against Monoamine Oxidase a and Increased Solubility. J. Med. Chem. 2007, 50, 4868–4881. DOI: 10.1021/jm070428+. (d) Vatmurge, N. S.; Hazra, B. G.; Pore, V. S.; Shirazi, F.; Chavan, P. S.; Deshpande, M. V. Synthesis and Antimicrobial Activity of Beta-Lactam-Bile Acid Conjugates Linked via Triazole. Bioorg. Med. Chem. Lett. 2008, 18, 2043–2047. DOI: 10.1016/j.bmcl.2008.01.102. (e) Luesse, S. B.; Wells, G.; Nayek, A.; Smith, A. E.; Kusche, B. R.; Bergmeier, S. C.; McMills, M. C.; Priestley, N. D.; Wright, D. L. Natural Products in Parallel Synthesis: Triazole Libraries of Nonactic Acid. Bioorg. Med. Chem. Lett. 2008, 18, 3946–3949. DOI: 10.1016/j.bmcl.2008.06.020. (f) Sangshetti, J. N.; Nagawade, R. R.; Shinde, D. B. Synthesis of Novel 3-(1-(1-Substituted Piperidin-4-yl)-1H-1,2,3-Triazol-4-yl)-1,2,4-Oxadiazol-5(4H)-One as Antifungal Agents. Bioorg. Med. Chem. Lett 2009, 19, 3564–3567. DOI: 10.1016/j.bmcl.2009.04.134. (g) Phillips, O. A.; Udo, E. E.; Abdel-Hamid, M. E.; Varghese, R. Synthesis and Antibacterial Activity of Novel 5-(4-Methyl-1H-1,2,3-Triazole) Methyl Oxazolidinones. Eur. J. Med. Chem. 2009, 44, 3217–3227. DOI: 10.1016/j.ejmech.2009.03.024. (h) Kategaonkar, A. H.; Shinde, P. V.; Kategaonkar, A. H.; Pasale, S. K.; Shingate, B. B.; Shingare, M. S. Synthesis and Biological Evaluation of New 2-Chloro-3-((4-Phenyl-1H-1,2,3-Triazol-1-yl)Methyl)Quinoline Derivatives via Click Chemistry Approach. Eur. J. Med. Chem. 2010, 45, 3142–3146. DOI: 10.1016/j.ejmech.2010.04.002. (i) Sumangala, V.; Poojary, B.; Chidananda, N.; Fernandes, J.; Kumari, N. S. Synthesis and Antimicrobial Activity of 1,2,3-Triazoles Containing Quinoline Moiety. Arch. Pharm. Res. 2010, 33, 1911–1918. DOI: 10.1007/s12272-010-1204-3. (j) Thomas, K. D.; Adhikari, A. V.; Shetty, N. S. Design, Synthesis and Antimicrobial Activities of Some New Quinoline Derivatives Carrying 1,2,3-Triazole Moiety. Eur. J. Med. Chem. 2010, 45, 3803–3810. DOI: 10.1016/j.ejmech.2010.05.030.
  • (a) Juríček, M.; Kouwer, P. H. J.; Rowan, A. E. Triazole: A Unique Building Block for the Construction of Functional Materials. Chem. Commun. 2011, 47, 8740–8749. DOI: 10.1039/c1cc10685f. (b) Brunel, D.; Dumur, F. Recent Advances in Organic Dyes and Fluorophores Comprising a 1,2,3-Triazole Moiety. New J. Chem. 2020, 44, 3546–3561. DOI: 10.1039/C9NJ06330G. (c) Bai, S. Q.; Kwang, J. Y.; Koh, L. L.; Young, D. J.; Hor, T. A. Functionalized 1,2,3-Triazoles as Building Blocks for Photoluminescent POLOs (Polymers of Oligomers) of Copper(I). Dalton. Trans. 2010, 39, 2631–2636. DOI: 10.1039/b918223c.
  • (a) Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Triazoles and Tetrazoles: Prime Ligands to Generate Remarkable Coordination Materials. Coord. Chem. Rev. 2011, 255, 485–546. DOI: 10.1016/j.ccr.2010.10.038. (b) Huang, D.; Zhao, P.; Astruc, D. Catalysis by 1,2,3-Triazole- and Related Transition-Metal Complexes. Coord. Chem. Rev 2014, 272, 145–165. DOI: 10.1016/j.ccr.2014.04.006. (c) Scattergood, P. A.; Sinopoli, A.; Elliott, P. I. P. Photophysics and Photochemistry of 1,2,3-Triazole-Based Complexes. Coord. Chem. Rev 2017, 350, 136–154. DOI: 10.1016/j.ccr.2017.06.017.
  • (a) Benson, F. R.; Savell, W. L. The Chemistry of the Vicinal Triazoles. Chem. Rev. 1950, 46, 1–68. DOI: 10.1021/cr60143a001. (b) Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. DOI: 10.1021/cr0783479. (c) Lima, C. G. S.; Ali, A.; Berkel, S. S.; Westermann, B.; Paixão, M. W. Emerging Approaches for the Synthesis of Triazoles: Beyond Metal-Catalyzed and Strain-Promoted Azide–Alkyne Cycloaddition. Chem. Commun. 2015, 51, 10784–10796. DOI: 10.1039/C5CC04114G. (d) John, J.; Thomas, J.; Dehaen, W. Organocatalytic Routes toward Substituted 1,2,3-Triazoles. Chem. Commun. 2015, 51, 10797–10806. DOI: 10.1039/C5CC02319J. (e) Johansson, J. R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem. Rev. 2016, 116, 14726–14768. DOI: 10.1021/acs.chemrev.6b00466. (f) Opsomer, T.; Dehaen, W. Metal-Free Syntheses of N-Functionalized and NH-1,2,3-Triazoles: An Update on Recent Developments. Chem. Commun. 2021, 57, 1568–1590. DOI: 10.1039/d0cc06654k.
  • (a) Driowya, M.; Puissant, A.; Robert, G.; Auberger, P.; Benhida, R.; Bougrin, K. Ultrasound-Assisted One-Pot Synthesis of anti-CML Nucleosides Featuring 1,2,3-Triazole Nucleobase under Iron-Copper Catalysis. Ultrason. Sonochem. 2012, 19, 1132–1138. DOI: 10.1016/j.ultsonch.2012.04.007. (b) Marzag, H.; Alaoui, S.; Amdouni, H.; Martin, A. R.; Bougrin, K.; Benhida, R. Efficient and Selective Azidation of per-O-Acetylated Sugars Using Ultrasound Activation: Application to the One-Pot Synthesis of 1,2,3-Triazole Glycosides. New J. Chem. 2015, 39, 5437–5444. DOI: 10.1039/C5NJ00624D. (c) Talha, A.; Mourhly, A.; Tachallait, H.; Driowya, M.; El Hamidi, A.; Arshad, S.; Karrouchi, K.; Arsalane, S.; Bougrin, K. One-Pot Four-Component Tandem Synthesis of Novel Sulfonamide-1, 2, 3-Triazoles Catalyzed by Reusable Copper (II)-Adsorbed on Mesoporous Silica under Ultrasound Irradiation. Tetrahedron. 2021, 90, 132215. DOI: 10.1016/j.tet.2021.132215.
  • (a) Hsieh, H.-Y.; Lee, W.-C.; Senadi, G. C.; Hu, W.-P.; Liang, J.-J.; Tsai, T.-R.; Chou, Y.-W.; Kuo, K.-K.; Chen, C.-Y.; Wang, J.-J. Discovery, Synthetic Methodology, and Biological Evaluation for Antiphotoaging Activity of Bicyclic[1,2,3]Triazoles: In Vitro and In Vivo Studies. J. Med. Chem. 2013, 56, 5422–5435. DOI: 10.1021/jm400394s. (b) González-Calderón, D.; Santillán-Iniesta, I.; González-González, C. A.; Fuentes-Benítes, A.; González-Romero, C. A Novel and Facile Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles from Benzylic Alcohols through a One-Pot, Three-Component System. Tetrahedron Lett. 2015, 56, 514–516. DOI: 10.1016/j.tetlet.2014.12.019.
  • (a) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Diphenylphosphoryl Azide. A New Convenient Reagent for a Modified Curtus Reaction and for the Peptide Synthesis. J. Am. Chem. Soc. 1972, 94, 6203–6205. DOI: 10.1021/ja00772a052. (b) For a review, see: Shioiri, T. Tcimail 2007, 134, 2–25. (c) Shioiri, T. In New Horizons of Process Chemistry-Scalable Reactions and Technologies; Tomioka, K.; Shioiri, T.; Sajiki, H., Eds.; Springer Nature: Singapore, 2017, pp. 131–145
  • (a) Ponpandian, T.; Muthusubramanian, S. Tandem Knoevenagel-[3 + 2] Cycloaddition-Elimination Reactions: One-Pot Synthesis of 4,5-Disubstituted 1,2,3-(NH)-Triazoles. Tetrahedron Lett. 2012, 53, 59–63. DOI: 10.1016/j.tetlet.2011.10.146. (b) Wu, L.; Wang, X.; Chen, Y.; Huang, Q.; Lin, Q.; Wu, M. Synlett. 2016, 27, 437–441. (c) Wu, G.-L.; Wu, Q.-P. A Mild Multi-Component Reaction for the Synthesis of 4,5-Disubstituted 1H-1,2,3-Triazoles from Phosphonium Salts, Aldehydes, and Sodium Azide. Synthesis 2018, 50, 2768–2774. DOI: 10.1055/s-0036-1591971. (d) Bhuyan, P.; Bhorali, P.; Islam, I.; Bhuyan, A. J.; Saikia, L. Magnetically Recoverable Copper Ferrite Catalyzed Cascade Synthesis of 4-Aryl-1H-1,2,3-Triazoles under Microwave Irradiation. Tetrahedron Lett. 2018, 59, 1587–1591. DOI: 10.1016/j.tetlet.2018.03.032. (e) Hiba, K.; Sreekumar, K. Multi- Arm Dendronized Polymer as a Unimolecular Micelle: Synthesis, Characterization and Application as Organocatalyst in the Synthesis of N-Unsubstituted 1,2,3-Triazoles. React. Func. Polym. 2021, 160, 104827. DOI: 10.1016/j.reactfunctpolym.2021.104827. (f) Phukan, P.; Chetia, R.; Boruah, R.; Konwer, S.; Sarma, D. Fabrication of Polypyrrole/Cu(ii) Nanocomposite through Liquid/Liquid Interfacial Polymerization: A Novel Catalyst for Synthesis of NH-1,2,3-Triazoles in PEG-400. Mater. Adv. 2021, 2, 6996–7006. DOI: 10.1039/D1MA00700A. (g) Garg, A.; Hazarika, R.; Dutta, N.; Dutta, B.; Sarma, D. Bio‐Waste Derived Catalytic Approach towards NH‐1,2,3‐Triazole Synthesis. ChemistrySelect. 2021, 6, 7266–7270. DOI: 10.1002/slct.202101347.
  • (a) Kawai, N.; Shioiri, T. New Methods and Reagents in Organic Synthesis. 34. Diphenyl Phosphorazidate (DPPA) as a 1,3-Dipole. A Simple, Efficient Conversion of Akyl Phenyl Ketones to 2-Phenylakanoic Acids. Chem. Pharm. Bull. 1983, 31, 2564–2573. DOI: 10.1248/cpb.31.2564. (b) Ramachary, D. B.; Ramakumar, K.; Narayana, V. V. Amino Acid-Catalyzed Cascade [3 + 2]-Cycloaddition/Hydrolysis Reactions Based on the Push-Pull Dienamine Platform: Synthesis of Highly Functionalized NH-1,2,3-Triazoles. Chemistry. 2008, 14, 9143–9147. DOI: 10.1002/chem.200801325. (c) Thomas, J.; Jana, S.; Liekens, S.; Dehaen, W. A Single-Step Acid Catalyzed Reaction for Rapid Assembly of NH-1,2,3-Triazoles. Chem Commun (Camb) 2016, 52, 9236–9239. DOI: 10.1039/C6CC03744E. (d) Wu, G.-L.; Wu, Q.-P. A Domino Reaction of Pyridinium Salts: Efficient Synthesis of 4,5‐Disubstituted 1,2,3‐( NH )‐Triazoles. ChemistrySelect. 2018, 3, 5212–5215. DOI: 10.1002/slct.201802459. (e) Ren, M.-T.; Li, M.; Wang, A.-J.; Gao, J.; Zhang, X.-X.; Shu, W.-M. Iodine-Mediated Condensation-Cyclization of α-Azido Ketones with p -Toluenesulfonyl Hydrazide for Synthesis of 4-Aryl- NH -1,2,3-Triazoles. Eur. J. Org. Chem. 2020, 2020, 2233–2236. DOI: 10.1002/ejoc.202000146. (f) Clark, P. R.; Williams, G. D.; Hayes, J. F.; Tomkinson, N. C. O. A Scalable Metal-, Azide-, and Halogen-Free Method for the Preparation of Triazoles. Angew. Chem. Int. Ed. Engl. 2020, 59, 6740–6744. DOI: 10.1002/anie.201915944. (g) Huang, C.; Geng, X.; Zhao, P.; Zhou, Y.; Yu, X.-X.; Wang, L.-S.; Wu, Y.-D.; Wu, A.-X. Direct Synthesis of 4-Aryl-1,2,3-Triazoles via I2-Promoted Cyclization under Metal- and Azide-Free Conditions. J. Org. Chem. 2021, 86, 13664–13672. DOI: 10.1021/acs.joc.1c01702.
  • (a) Ito, S.; Kakehi, A.; Yamazaki, A. Thermolysis of α-Azidoacetcphenone Phenylsulfonylhydrazones. A New Preparative Route to 4-Aryl-1 H -1,2,3-Triazoles. Chem. Lett. 1990, 19, 453–454. DOI: 10.1246/cl.1990.453. (b) Shu, W.-M.; Zhang, X.-F.; Zhang, X.-X.; Li, M.; Wang, A.-J.; Wu, A.-X. Metal-Free Cascade [4 + 1] Cyclization Access to 4-Aryl-NH-1,2,3-Triazoles from N-Tosylhydrazones and Sodium Azide. J. Org. Chem. 2019, 84, 14919–14925. DOI: 10.1021/acs.joc.9b02250.
  • (a) Quiclet-Sire, B.; Zard, S. Z. The Synthesis of 1,2,3-Triazoles from Nitroalkenes - Revisited. Synthesis. 2005, 19, 3319–3326. DOI: 10.1055/s-2005-918463. (b) Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. Synthesis of 4-Aryl-1H-1,2,3-Triazoles through TBAF-Catalyzed [3 + 2] Cycloaddition of 2-Aryl-1-Nitroethenes with TMSN3 under Solvent-Free Conditions. J. Org. Chem. 2005, 70, 6526–6529. DOI: 10.1021/jo0507845. (c) Barluenga, J.; Valdés, C.; Beltrán, G.; Escribano, M.; Aznar, F. Developments in Pd Catalysis: Synthesis of 1H-1,2,3-Triazoles from Sodium Azide and Alkenyl Bromides. Angew. Chem. Int. Ed. Engl. 2006, 45, 6893–6896. DOI: 10.1002/anie.200601045. (d) Sengupta, S.; Duan, H.; Lu, W.; Petersen, J. L.; Shi, X. One Step Cascade Synthesis of 4,5-Disubstituted-1,2,3-(NH)-Triazoles. Org. Lett. 2008, 10, 1493–1496. DOI: 10.1021/ol8002783. (e) Wang, X.; Kuang, C.; Yang, Q. Copper-Catalyzed Synthesis of 4-Aryl-1H-1,2,3-Triazoles from 1,1-Dibromoalkenes and Sodium Azide. Eur. J. Org. Chem. 2012, 2012, 424–428. DOI: 10.1002/ejoc.201101204. (f) Wang, T.; Hu, X.-C.; Huang, X.-J.; Li, X.-S.; Xie, J.-W. Efficient Synthesis of Functionalized 1,2,3-Triazoles by Catalyst-Free 1,3-Dipolar Cycloaddition of Nitroalkenes with Sodium Azide. J. Braz. Chem. Soc. 2012, 23, 1119–1123. DOI: 10.1590/S0103-50532012000600017. (g) Augustine, J. K.; Boodappa, C.; Venkatachaliah, S. α-Haloacrylates as Acceptors in the [3 + 2] Cycloaddition Reaction with NaN3: An Expedient Approach to N-Unsubstituted 1,2,3-Triazole-4-Carboxylates. Org. Biomol. Chem. 2014, 12, 2280–2288. DOI: 10.1039/c3ob42276c. (h) Quan, X.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. p-Toluenesulfonic Acid Mediated 1,3-Dipolar Cycloaddition of Nitroolefins with NaN3 for Synthesis of 4-aryl-NH-1,2,3-Triazoles. Org. Lett. 2014, 16, 5728–5731. DOI: 10.1021/ol5027975. (i) Li, D.; Liu, L.; Tian, Y.; Ai, Y.; Tang, Z.; Sun, H-b.; Zhang, G. A Flow Strategy for the Rapid, Safe and Scalable Synthesis of N-H 1, 2, 3-Triazoles via Acetic Acid Mediated Cycloaddition between Nitroalkene and NaN3. Tetrahedron. 2017, 73, 3959–3965. DOI: 10.1016/j.tet.2017.05.065. (j) Saha, A.; Wu, C.-M.; Peng, R.; Koodali, R.; Banerjee, S. Facile Synthesis of 1,3,5-Triarylbenzenes and 4-Aryl- NH -1,2,3-Triazoles Using Mesoporous Pd-MCM-41 as Reusable Catalyst. Eur. J. Org. Chem. 2019, 2019, 104–111. DOI: 10.1002/ejoc.201801290.
  • (a) Journet, M.; Cai, D.; Kowal, J. J.; Larsen, R. D. Highly Efficient and Mild Synthesis of Variously 5-Substituted-4-Carbaldehyde-1,2,3-Triazole Derivatives. Tetrahedron Lett. 2001, 42, 9117–9118. DOI: 10.1016/S0040-4039(01)01923-2. (b) Jin, T.; Kamijo, S.; Yamamoto, Y. Copper-Catalyzed Synthesis ofN-Unsubstituted 1,2,3-Triazoles from Nonactivated Terminal Alkynes. Eur. J. Org. Chem. 2004, 2004, 3789–3791. DOI: 10.1002/ejoc.200400442. (c) Loren, J. C.; Krasiński, A.; Fokin, V. V.; Sharpless, K. B. Synlett. 2005, 2847–2850. (d) Yap, A. H.; Weinreb, S. M. β-Tosylethylazide: A Useful Synthon for Preparation of N-Protected 1,2,3-Triazoles via Click Chemistry. Tetrahedron Lett. 2006, 47, 3035–3038. DOI: 10.1016/j.tetlet.2006.03.020. (e) Lu, L. H.; Wu, J. H.; Yang, C. H. Preparation of 1H-1,2,3-Triazoles by Cuprous Ion Mediated Cycloaddition of Terminal Alkyne and Sodium Azide. Jnl Chinese Chemical Soc. 2008, 55, 414–417. DOI: 10.1002/jccs.200800061. (f) Kim, J. D.; Palani, T.; Kumar, M. R.; Lee, S.; Choi, H. C. Preparation of Reusable Ag-Decorated Graphene Oxide Catalysts for Decarboxylative Cycloaddition. J. Mater. Chem. 2012, 22, 20665–20670. DOI: 10.1039/c2jm35512d. (g) Hu, L.; Mück-Lichtenfeld, C.; Wang, T.; He, G.; Gao, M.; Zhao, J. Reaction between Azidyl Radicals and Alkynes: A Straightforward Approach to NH -1,2,3-Triazoles. Chem. Eur. J. 2016, 22, 911–915., DOI: 10.1002/chem.201504515. (h) Bal, A.; Mal, P. A Click Reaction Enabled by Phosphorus‐Oxygen Bond for Synthesis of Triazoles. ChemistrySelect. 2021, 6, 9317–9322. DOI: 10.1002/slct.202102758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.