Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 19-20
321
Views
1
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Synthesis of heterocycles from urea and its derivatives

, &
Pages 1867-1899 | Received 13 Jul 2022, Published online: 07 Sep 2022

References

  • (a) Quiroga, J.; Insuasty, H.; Insuasty, B.; Abonı́a, R.; Cobo, J.; Sánchez, A.; Nogueras, M. New Aspects on the Selective Synthesis of 7-Arylpyrido[2,3-d]Pyrimidines. Tetrahedron. 2002, 58, 4873–4877. DOI: 10.1016/S0040-4020(02)00433-7. (b) Kaur, N. Metal Catalysts: Applications in Higher Membered N-heterocycles Synthesis. J. Iran. Chem. Soc. 2015, 12, 9–45. DOI: 10.1007/s13738-014-0451-5. (c) Kaur, N. Palladium-catalyzed Approach to the Synthesis of S-heterocycles. Catal. Rev. 2015, 57, 478–564. DOI: 10.1080/01614940.2015.1082824. (d) Kaur, N. Copper Catalysts in the Synthesis of Five-membered N-polyheterocycles. COS. 2018, 15, 940–971. DOI: 10.2174/1570179415666180815144442. (e) Kaur, N. Recent Developments in the Synthesis of Nitrogen Containing Five-membered Polyheterocycles Using Rhodium Catalysts. Synth. Commun. 2018, 48, 2457–2474. DOI: 10.1080/00397911.2018.1487070. (f) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of Titanium Catalysts for the Syntheses of Heterocycles. Synth. Commun. 2019, 49, 1847–1894. DOI: 10.1080/00397911.2019.1606922. (g) Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and Biological Attributes of Pyrimidine Derivatives: A Recent Update. Curr. Org. Synth. 2021, 18, 790–825. DOI: 10.2174/1570179418666210706152515. (h) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N. K. Photochemical C-N Bond Forming Reactions for the Synthesis of Five-membered Fused N-Heterocycles. Synth. Commun. 2020, 50, 1286–1334. DOI: 10.1080/00397911.2020.1713378. (i) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Metal and Organo-complex Promoted Synthesis of Fused Five-membered O-heterocycles. Synth. Commun. 2020, 50, 457–505. DOI: 10.1080/00397911.2019.1700522. (j) (Kaur, N. Ionic Liquid: An Efficient and Recyclable Medium for the Synthesis of Fused Six-membered Oxygen Heterocycles. Synth. Commun. 2019, 49, 1679–1707. DOI: 10.1080/00397911.2019.1568149. (k) Kaur, N. Multiple Nitrogen-containing Heterocycles: Metal and Non-metal Assisted Synthesis. Synth. Commun. 2019, 49, 1633–1658. DOI: 10.1080/00397911.2018.1542497. (l) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed Synthesis of Five-membered Heterocycles. Synth. Commun. 2019, 49, 1543–1577. DOI: 10.1080/00397911.2019.1594306. (m) Kaur, N. Gold and Silver Assisted Synthesis of Five-membered Oxygen and Nitrogen Containing Heterocycles. Synth. Commun. 2019, 49, 1459–1485. DOI: 10.1080/00397911.2019.1575423. (n) Kaur, N. Synthesis of Six- and Seven-membered and Larger Heterocycles Using Au and Ag Catalysts. Inorg. Nano Met. Chem. 2018, 48, 541–568. DOI: 10.1080/24701556.2019.1567544. (o) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical Reactions in Five and Six-membered Polyheterocycles Synthesis. Synth. Commun. 2019, 49, 2281–2318. DOI: 10.1080/00397911.2019.1622732. (p) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Crown Ethers for the Synthesis of Heterocycles. COC. 2021, 25, 1270–1297. DOI: 10.2174/1385272825666210521121820. (q) Kaur, N.; Bhardwaj, P.; Gupta, M. Recent Developments in the Synthesis of Five- and Six-membered N-Heterocycles from Dicarbonyl Compounds. COC. 2021, 25, 2765–2790. DOI: 10.2174/1385272825666210812102416. (r) Kaur, N.; Verma, Y.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Copper-assisted Synthesis of Five-membered O-heterocycles. Inorg. Nano Met. Chem. 2020, 50, 705–740. DOI: 10.1080/24701556.2020.1724144. (s) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic Aspects of Condensed Pyrimidine Derivatives. COC. 2021, 25, 2625–2649. DOI: 10.2174/1385272825666210706123734. (t) Kaur, N. Microwave-assisted Synthesis: Fused Five Membered N-heterocycles. Synth. Commun. 2015, 45, 789–823. DOI: 10.1080/00397911.2013.824984. (u) Kaur, N. Six Membered Heterocycles with Three and Four N-heteroatoms: Microwave-assisted Synthesis. Synth. Commun. 2015, 45, 151–172. DOI: 10.1080/00397911.2013.813550.
  • (a) Wamhoff, H.; Lichtenthäler, L. Heterocyclic Beta-enamino Esters Pyrido[2,3-d]Pyrimidines from 2-Amino-3-ethoxycarbonyl-1,4,5,6-tetrahydropyridine and Isocyanates, Isothiocyanates, Imidates, Formamide, and Lactim Ethers. Chem. Ber. 1978, 111, 2297–2306. DOI: 10.1002/cber.19781110625. (b) Kaur, N. Methods for Metal and Non-metal Catalyzed Synthesis of Six-membered Oxygen Containing Poly-Heterocycles. COS. 2017, 14, 531–556. DOI: 10.2174/1570179413666161021104941. (c) Kaur, N. Photochemical Reactions: Synthesis of Six-membered N-heterocycles. Curr. Org. Synth. 2017, 14, 972–998. (d) Kaur, N. Ionic Liquids: Promising but Challenging Solvents for the Synthesis of N-heterocycles. MROC. 2017, 14, 3–23. DOI: 10.2174/1570193X13666161019120050. (e) Kaur, N. Metal Catalysts for the Formation of Six-membered N-polyheterocycles. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2016, 46, 983–1020. DOI: 10.1080/15533174.2014.989620. (f) Kaur, N. Applications of Gold Catalysts for the Synthesis of Five-membered O-heterocycles. Inorg. Nano Met. Chem. 2017, 47, 163–187. DOI: 10.1080/15533174.2015.1068809. (g) Kaur, N. Photochemical Irradiation: Seven and Higher Membered O-heterocycles. Synth. Commun. 2018, 48, 2935–2964. DOI: 10.1080/00397911.2018.1514051. (h) Kaur, N.; Grewal, P.; Poonia, K. Dicarbonyl Compounds in O-heterocycle Synthesis. Synth. Commun. 2021, 51, 2423–2444. DOI: 10.1080/00397911.2021.1941114. (i) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Cu-assisted C-N Bond Formations in Six-membered N-heterocycle Synthesis. Synth. Commun. 2020, 50, 1075–1132. DOI: 10.1080/00397911.2019.1695278. (j) Kaur, N. Ruthenium Catalysis in Six-membered O-heterocycles Synthesis. Synth. Commun. 2018, 48, 1551–1587. DOI: 10.1080/00397911.2018.1457698. (k) Kaur, N. Green Synthesis of Three to Five-membered O-heterocycles Using Ionic Liquids. Synth. Commun. 2018, 48, 1588–1613. DOI: 10.1080/00397911.2018.1458243. (l) Kaur, N. Ultrasound-assisted Green Synthesis of Five-membered O- and S-heterocycles. Synth. Commun. 2018, 48, 1715–1738. DOI: 10.1080/00397911.2018.1460671. (m) Kaur, N. Photochemical Mediated Reactions in Five-membered O-heterocycles Synthesis. Synth. Commun. 2018, 48, 2119–2149. DOI: 10.1080/00397911.2018.1485165. (n) Kaur, N. Mercury-catalyzed Synthesis of Heterocycles. Synth. Commun. 2018, 48, 2715–2749. DOI: 10.1080/00397911.2018.1497657. (o) Kaur, N. Palladium-catalyzed Approach to the Synthesis of Five-membered O-heterocycles. Inorg. Chem. Commun. 2014, 49, 86–119. DOI: 10.1016/j.inoche.2014.09.024. (p) Kaur, N.; Kishore, D. Nitrogen-containing Six-membered Heterocycles: Solid-phase Synthesis. Synth. Commun. 2014, 44, 1173–1211. DOI: 10.1080/00397911.2012.760129. (q) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N. K. Ag-mediated Synthesis of Six-Membered N-Heterocycles. Synth. Commun. 2020, 50, 753–795. DOI: 10.1080/00397911.2019.1703196. (r) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Silver-assisted Syntheses of Fused Five-membered N-heterocycles. COC. 2021, 25, 2232–2257. DOI: 10.2174/1385272825666210716144555. (s) Kaur, N.; Kishore, D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. Synth. Commun. 2014, 44, 1375–1413. DOI: 10.1080/00397911.2013.772202. (t) Kaur, N. Application of Microwave-assisted Synthesis in the Synthesis of Fused Six-membered Heterocycles with N-heteroatom. Synth. Commun. 2015, 45, 173–201. DOI: 10.1080/00397911.2013.816734. (u) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N. K. Synthesis of Five-membered N-heterocycles Using Rh Based Metal Catalysts. Synth. Commun. 2020, 50, 137–160. DOI: 10.1080/00397911.2019.1689271. (v) Kaur, N.; Ahlawat, N.; Verma, Y.; Bhardwaj, P.; Grewal, P.; Jangid, N. K. Rhodium Catalysis in the Synthesis of Fused Five-membered N-heterocycles. Inorg. Nano Met. Chem. 2020, 50, 1260–1289. DOI: 10.1080/24701556.2020.1745838.
  • (a) Borrell, J. L.; Teixido, J.; Martinez-Teipel, B.; Matallana, J. L.; Copete, M. T.; Llimargas, A.; Garcia, E. Synthesis and Biological Activity of 4-Amino-7-oxo-substituted Analogues of 5-Deaza-5,6,7,8-tetrahydrofolic Acid and 5,10-Dideaza-5,6,7,8-tetrahydrofolic Acid. J. Med. Chem. 1998, 41, 3539–3545. DOI: 10.1021/jm9801298. (b) Kaur, N. Synthesis of Six and Seven-membered Heterocycles under Ultrasound Irradiation. Synth. Commun. 2018, 48, 1235–1258. DOI: 10.1080/00397911.2018.1434894. (c) Kaur, N. Photochemical Reactions as Key Steps in Five-membered N-heterocycles Synthesis. Synth. Commun. 2018, 48, 1259–1284. DOI: 10.1080/00397911.2018.1443218. (d) Kaur, N. Solid-phase Synthesis of Sulfur Containing Heterocycles. J. Sulfur Chem. 2018, 39, 544–577. DOI: 10.1080/17415993.2018.1457673. (e) Kaur, N.; Kishore, D. Microwave-assisted Synthesis of Six-membered S-heterocycles. Synth. Commun. 2014, 44, 2615–2644. DOI: 10.1080/00397911.2013.792354. (f) Kaur, N. Synthesis of Five-membered N,N,N- and N,N,N,N-heterocyclic Compounds: Applications of Microwaves. Synth. Commun. 2015, 45, 1711–1742. DOI: 10.1080/00397911.2013.828756. (g) Kaur, N. Role of Microwaves in the Synthesis of Fused Five Membered Heterocycles with Three N-heteroatoms. Synth. Commun. 2015, 45, 403–431. DOI: 10.1080/00397911.2013.824981. (h) Kaur, N. Recent Impact of Microwave-assisted Synthesis on Benzo Derivatives of Five Membered N-heterocycles. Synth. Commun. 2015, 45, 539–568. DOI: 10.1080/00397911.2013.824983. (i) Kaur, N. Gold Catalysts in the Synthesis of Five-membered N-heterocycles. Curr. Organocatal. 2017, 4, 122–154. (j) Kaur, N. Applications of Palladium Dibenzylideneacetone as Catalyst in the Synthesis of Five-membered N-heterocycles. Synth. Commun. 2019, 49, 1205–1230. DOI: 10.1080/00397911.2018.1540048. (k) Kaur, N. Copper Catalyzed Synthesis of Seven and Higher-membered Heterocycles. Synth. Commun 2019, 49, 879–916. DOI: 10.1080/00397911.2018.1543780. (l) Kaur, N. Ionic Liquid Assisted Synthesis of S-heterocycles. Phosphorus, Sulfur. Silicon Relat. Elem. 2019, 194, 165–185. DOI: 10.1080/10426507.2018.1539492. (m) Kaur, N. Nickel Catalysis: Six Membered Heterocycle Syntheses. Synth. Commun. 2019, 49, 1103–1133. DOI: 10.1080/00397911.2019.1568499. (n) Kaur, N. Seven-membered N-heterocycles: Metal and Non-metal Assisted Synthesis. Synth. Commun. 2019, 49, 987–1030. DOI: 10.1080/00397911.2019.1574351. (o) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P. A Review of Ruthenium Catalyzed C-N Bond Formation Reactions for the Synthesis of Five-membered N-heterocycles. COC. 2019, 23, 1901–1944. DOI: 10.2174/1385272823666191021104118. (p) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Gold-catalyzed C-O Bond Forming Reactions for the Synthesis of Six-membered O-heterocycles. SN Appl. Sci. 2019, 1, 1–37. DOI: 10.1007/s42452-019-0920-7. (q) Kaur, N. Ionic Liquid Assisted Synthesis of Six-membered Oxygen Heterocycles. SN Appl. Sci. 2019, 1, 1–20. DOI: 10.1007/s42452-019-0861-1. (r) Kaur, N.; Kishore, D. Solid-phase Synthetic Approach toward the Synthesis of Oxygen Containing Heterocycles. Synth. Commun. 2014, 44, 1019–1042. DOI: 10.1080/00397911.2012.760131. (s) Kaur, N. Synthesis of Three-membered and Four-membered Heterocycles with the Assistance of Photochemical Reactions. J. Heterocyclic Chem. 2019, 56, 1141–1167. DOI: 10.1002/jhet.3491. (t) Kaur, N.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Verma, Y. Organo or Metal Complex Catalyzed Synthesis of Five-membered Oxygen Heterocycles. COC 2020, 23, 2822–2847. DOI: 10.2174/1385272823666191122111351. (u) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Ahlawat, N.; Verma, Y. Synthesis of Five-membered N-heterocycles Using Silver Metal. Synth. Commun. 2019, 49, 3058–3100. DOI: 10.1080/00397911.2019.1655767. (v) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N. K. Palladium Acetate Assisted Synthesis of Five-membered N-polyheterocycles. Synth. Commun. 2020, 50, 1567–1621. DOI: 10.1080/00397911.2020.1723640.
  • (a) Suma, B. V.; Natesh, N. N.; Venkataramana, C. H. S.; Jays, J.; Madhavan, V. Synthesis and Antibacterial of Some New 1,2,3-Benzotriazoles Derivatives Containing Pyrazolidinedione Moieties. Int. J. Pharm. Pharm. Sci. 2012, 4, 169–173. (b) Kaur, N. Synthetic Routes to Seven and Higher Membered S-heterocycles by Use of Metal and Nonmetal Catalyzed Reactions. Phosphorus, Sulfur. Silicon Relat. Elem. 2019, 194, 186–209. DOI: 10.1080/10426507.2018.1539493. (c) Kaur, N. Synthesis of Six-membered N-heterocycles Using Ruthenium Catalysts. Catal. Lett. 2019, 14, 1513–1539. (d) Kaur, N. Microwave-assisted Synthesis of Fused Polycyclic Six Membered N-heterocycles. Synth. Commun. 2015, 45, 273–299. DOI: 10.1080/00397911.2013.816735. (e) Kaur, N. Review of Microwave-assisted Synthesis of Benzo Fused Six-membered N,N-heterocycles. Synth. Commun. 2015, 45, 300–330. DOI: 10.1080/00397911.2013.816736. (f) Kaur, N.; Kishore, D. Microwave-assisted Synthesis of Seven and Higher Membered N-heterocycles. Synth. Commun. 2014, 44, 2577–2614. DOI: 10.1080/00397911.2013.783922. (g) Kaur, N. Applications of Microwaves in the Synthesis of Polycyclic Six Membered N,N-heterocycles. Synth. Commun. 2015, 45, 1599–1631. DOI: 10.1080/00397911.2013.828755. (h) Kaur, N. Palladium Catalysts: Synthesis of Five-membered N-heterocycles Fused with Other Heterocycles. Catal. Rev. 2015, 57, 1–78. DOI: 10.1080/01614940.2014.976118. (i) Kaur, N. Ultrasound Assisted Synthesis of Six-membered N-heterocycles. MROC. 2018, 15, 520–536. DOI: 10.2174/1570193x15666180221152535. (j) Kaur, N. Synthesis of Five-membered Heterocycles Containing Nitrogen Heteroatom under Ultrasonic Irradiation. MROC. 2019, 16, 481–503. DOI: 10.2174/1570193X15666180709144028. (k) Kaur, N. Ionic Liquid Promoted Eco-friendly and Efficient Synthesis of Six-membered N-polyheterocycles. COS. 2018, 15, 1124–1146. DOI: 10.2174/1570179415666180903102542. (l) Kaur, N. Metal and Non-metal Catalysts in the Synthesis of Five-membered S-heterocycles. Curr. Org. Synth. 2019, 16, 258–275. DOI: 10.2174/1570179416666181207144430. (m) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic Liquids in the Synthesis of Five-membered N,N-, N,N,N- and N,N,N,N-heterocycles. COC. 2019, 23, 1214–1238. DOI: 10.2174/1385272823666190717101741. (n) Kaur, N. Synthesis of Seven and Higher-membered Heterocycles Using Ruthenium Catalysts. Synth. Commun. 2019, 49, 617–661. DOI: 10.1080/00397911.2018.1555711. (o) Kaur, N. Palladium Acetate and Phosphine Assisted Synthesis of Five-membered N-heterocycles. Synth. Commun. 2019, 49, 483–514. DOI: 10.1080/00397911.2018.1536213. (p) Kaur, N. Application of Silver-promoted Reactions in the Synthesis of Five-membered O-heterocycles. Synth. Commun. 2019, 49, 743–789. DOI: 10.1080/00397911.2019.1570525. (q) Kaur, N. Environmentally Benign Synthesis of Five Membered 1,3-N,N-heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 909–943. DOI: 10.1080/00397911.2013.825808. (r) Kaur, N. Advances in Microwave-assisted Synthesis for Five Membered N-heterocycles Synthesis. Synth. Commun. 2015, 45, 432–457. DOI: 10.1080/00397911.2013.824982. (s) Kaur, N. Microwave-assisted Synthesis of Five Membered S-heterocycles. J. Iran. Chem. Soc. 2014, 11, 523–564. DOI: 10.1007/s13738-013-0325-2. (t) Kaur, N. Review on the Synthesis of Six Membered N,N-heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 1145–1182. DOI: 10.1080/00397911.2013.827208. (u) Kaur, N. Greener and Expeditious Synthesis of Fused Six-membered N,N-heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1493–1519. DOI: 10.1080/00397911.2013.828236. (v) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of Five-membered O,N-heterocycles Using Metal and Non-metal. Synth. Commun. 2019, 49, 1345–1384. DOI: 10.1080/00397911.2019.1594308.
  • Struga, M.; Kossakowski, J.; Koziol, E.; Kedzierska, E.; Fidecka, S.; Colla, P. L.; Ibba, C.; Collu, G.; Sanna, G.; Secci, B.; Loddo, R. Synthesis, Pharmacological and Antiviral Activity of 1,3-Thiazepine Derivatives. J. Med. Chem. 2009, 44, 4960–4969. DOI: 10.1016/j.ejmech.2009.08.013.
  • Kodomari, M.; Suzuki, M.; Tanigawa, K.; Aoyama, T. A Convenient and Efficient Method for the Synthesis of Mono- and N,N-disubstituted Thioureas. Tetrahedron Lett. 2005, 46, 5841–5843. DOI: 10.1016/j.tetlet.2005.06.135.
  • Katritzky, A. R.; Gordeev, M. F. New 1H-benzotriazole-mediated Synthesis of N,N’-disubstituted Thioureas and Carbodiimides. J. Chem. Soc. Perkin 1. 1991, 9, 2199–2203.
  • Ren, J. S.; Diprose, J.; Warren, J.; Esnouf, R. M.; Bird, L. E.; Ikemizu, S.; Slater, M.; Milton, J.; Balzarini, J.; Stuart, D. I.; Stammers, D. K. Phenylethylthiazolylthiourea (PETT) Non-nucleoside Inhibitors of HIV-1 and HIV-2 Reverse Transcriptases. J. Biol. Chem. 2000, 275, 5633–5639. DOI: 10.1074/jbc.275.8.5633.
  • Elmali, F. T.; Avciata, U.; Demirhan, N. Synthesis and Characterization of New Thiourea Derivatives Substituted 1,10-Phenanthroline and Crown Ether. Main Group Chem. 2011, 10, 17–23. DOI: 10.3233/MGC-2010-0020.
  • Pena-Lopez, M.; Neumann, H.; Beller, M. Enantioselective Hydrogen Auto Transfer: Ruthenium-catalyzed Synthesis of Oxazolidin-2-ones from Urea and Diols. Angew. Chem. Int. Ed. 2016, 55, 7826–7830. DOI: 10.1002/anie.201600698.
  • Li, F.; Sun, C.; Shan, H.; Zou, X.; Xie, J. From Regioselective Condensation to Regioselective N-Alkylation: A Novel and Environmentally Benign Strategy for the Synthesis of N,N’-alkyl Aryl Ureas and N,N’-dialkyl Ureas. ChemCatChem. 2013, 5, 1543–1552. DOI: 10.1002/cctc.201200648.
  • Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. The “Borrowing Hydrogen Strategy” by Supported Ruthenium Hydroxide Catalysts: Synthetic Scope of Symmetrically and Unsymmetrically Substituted Amines. Chemistry. 2010, 16, 7199–7207. DOI: 10.1002/chem.201000149.
  • He, J.; Kim, J. W.; Yamaguchi, K.; Mizuno, N. Efficient Catalytic Synthesis of Tertiary and Secondary Amines from Alcohols and Urea. Angew. Chem. Int. Ed. 2009, 48, 9888–9891. DOI: 10.1002/anie.200905385.
  • Dibenedetto, A.; Nocito, F.; Angelini, A.; Papai, I.; Aresta, M.; Mancuso, R. Catalytic Synthesis of Hydroxymethyl-2-oxazolidinones from Glycerol or Glycerol Carbonate and Urea. ChemSusChem. 2013, 6, 345–352. DOI: 10.1002/cssc.201200524.
  • Allali, H.; Tabti, B.; Alexandre, C.; Huet, F. An Easy Route to 4-Substituted 2-Oxazolidinones from Prochiral-1,3-diols. Tetrahedron Asymmetry. 2004, 15, 1331–1333. DOI: 10.1016/j.tetasy.2004.02.034.
  • Lelais, G.; Seebach, D. β2-Amino Acids - Syntheses, Occurrence in Natural Products, and Components of β-peptides. Bipolymers. 2004, 76, 206–243. DOI: 10.1002/bip.20088.
  • Wee, A. G. H.; Mcleod, D. D. Stereoselective Synthesis of the Nonproteinogenic Amino Acid (2S,3R)-3-Amino-2-Hydroxydecanoic Acid from (4S,5S)-4-Formyl-5-Vinyl-2-Oxazolidinone. J. Org. Chem. 2003, 68, 6268–6273. DOI: 10.1021/jo034334t.
  • Lucet, D.; Sabelle, S.; Kostelitz, O.; Gall, T. L.; Mioskowski, C. Enantioselective Synthesis of α-Amino Acids and Monosubstituted 1,2-Diamines by Conjugate Addition of 4-Phenyl-2-oxazolidinone to Nitroalkenes. Eur. J. Org. Chem. 1999, 10, 2583–2591.
  • Heravi, M. M.; Zadsirjan, V.; Dehghani, M.; Hosseintash, N. Current Applications of Organocatalysts in Asymmetric Aldol Reactions: An Update. Tetrahedron Asymmetry. 2013, 24, 1149–1188. DOI: 10.1016/j.tetasy.2013.08.011.
  • Farina, V.; Reeves, J. T.; Senanayake, C. H.; Song, J. J. Asymmetric Synthesis of Active Pharmaceutical Ingredients. Chem. Rev. 2006, 106, 2734–2793. DOI: 10.1021/cr040700c.
  • Glorius, F.; Gnas, Y. Chiral Auxiliaries - Principles and Recent Applications. Synthesis. 2006, 2006, 1899–1930. DOI: 10.1055/s-2006-942399.
  • Ager, D. J.; Prakash, I.; Schaad, D. R. 1,2-Amino Alcohols and Their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis. Chem. Rev. 1996, 96, 835–876. DOI: 10.1021/cr9500038.
  • Evans, D. A.; Bartroli, J.; Shih, T. L. Enantioselective Aldol Condensations. 2. Erythro-selective Chiral Aldol Condensations via Boron Enolates. J. Am. Chem. Soc. 1981, 103, 2127–2129. DOI: 10.1021/ja00398a058.
  • Pandit, N.; Singla, R. V.; Shrivastava, B. Current Updates on Oxazolidinone and Its Significance. Int. J. Med. Chem. 2012, 2012, 1–24. DOI: 10.1155/2012/159285.
  • Yan, S.; Miller, M. J.; Wencewicz, T. A.; Mollmann, U. Syntheses and Antibacterial Activity Studies of New Oxazolidinones from Nitroso Diels-Alder Chemistry. Bioorg. Med. Chem. Lett. 2010, 20, 1302–1305. DOI: 10.1016/j.bmcl.2009.10.018.
  • Mukhtar, T. A.; Wright, G. D. Streptogramins, Oxazolidinones, and Other Inhibitors of Bacterial Protein Synthesis. Chem. Rev. 2005, 105, 529–542. DOI: 10.1021/cr030110z.
  • Barbachyn, M. R.; Ford, C. W. Oxazolidinone Structure-activity Relationships Leading to Linezolid. Angew. Chem. Int. Ed. Engl. 2003, 42, 2010–2023. DOI: 10.1002/anie.200200528.
  • Wang, P.; Qin, J.; Yuan, D.; Wang, Y.; Yao, Y. Synthesis of Oxazolidinones from Epoxides and Isocyanates Catalyzed by Rare-earth-metal Complexes. ChemCatChem. 2015, 7, 1145–1151. DOI: 10.1002/cctc.201403015.
  • Alamsetti, S. K.; Persson, A. K. A.; Backvall, J. E. Palladium-catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates. Org. Lett. 2014, 16, 1434–1437. DOI: 10.1021/ol5002279.
  • Soldi, L.; Massera, C.; Costa, M.; Ca, N. D. A Novel One-pot Synthesis of Oxazolidinones through Direct Introduction of CO2 into Allylamine Derivatives. Tetrahedron Lett. 2014, 55, 1379–1383. DOI: 10.1016/j.tetlet.2014.01.029.
  • Song, Q. W.; Zhao, Y. N.; He, L. N.; Gao, J.; Yang, Z. Z. Synthesis of Oxazolidinones/Polyurethanes from Aziridines and CO2. CCAT. 2012, 1, 107–124. DOI: 10.2174/2211544711201020107.
  • Imm, S.; Bahn, S.; Zhang, M.; Neubert, L.; Neumann, H.; Klasovsky, F.; Pfeffer, J.; Haas, T.; Beller, M. Improved Ruthenium-catalyzed Amination of Alcohols with Ammonia: Synthesis of Diamines and Amino Esters. Angew. Chem. Int. Ed. Engl. 2011, 50, 7599–7603. DOI: 10.1002/anie.201103199.
  • Zhang, M.; Imm, S.; Bahn, S.; Neumann, H.; Beller, M. Synthesis of α-Amino Acid Amides: Ruthenium-catalyzed Amination of α-Hydroxy Amides. Angew. Chem. 2011, 123, 11393–11397. DOI: 10.1002/ange.201104309.
  • Zhang, M.; Imm, S.; Bahn, S.; Neumann, H.; Beller, M. Synthesis of α-Amino Acid Amides: Ruthenium-catalyzed Amination of α-Hydroxy Amides. Angew. Chem. Int. Ed. Engl. 2011, 50, 11197–11201. DOI: 10.1002/anie.201104309.
  • Imm, S.; Bahn, S.; Neubert, L.; Neumann, H.; Beller, M. An Efficient and General Synthesis of Primary Amines by Ruthenium-catalyzed Amination of Secondary Alcohols with Ammonia. Angew. Chem. Int. Ed. Engl. 2010, 49, 8126–8129. DOI: 10.1002/anie.201002576.
  • Imm, S.; Bahn, S.; Neubert, L.; Neumann, H.; Beller, M. Eine Effiziente Und Allgemeine Synthese Primärer Amine Durch Ruthenium-Katalysierte Aminierung Sekundärer Alkohole Mit Ammoniak. Angew. Chem. 2010, 122, 8303–8306. DOI: 10.1002/ange.201002576.
  • Bahn, S.; Tillack, A.; Imm, S.; Mevius, K.; Michalik, D.; Hollmann, D.; Neubert, L.; Beller, M. Ruthenium-catalyzed Selective Monoamination of Vicinal Diols. ChemSusChem. 2009, 2, 551–557. DOI: 10.1002/cssc.200900034.
  • Diaz, G.; Freitas, M. D.; Ricci-Silva, M.; Diaz, M. Easy Access to Evans’ Oxazolidinones. Stereoselective Synthesis and Antibacterial Activity of a New 2-Oxazolidinone Derivative. Molecules. 2014, 19, 7429–7439. DOI: 10.3390/molecules19067429.
  • Sakamoto, S.; Kazumi, N.; Kobayashi, Y.; Tsukano, C.; Takemoto, Y. Asymmetric Synthesis of Trisubstituted Oxazolidinones by the Thiourea-catalyzed Aldol Reaction of 2-Isocyanatomalonate Diester. Org. Lett. 2014, 16, 4758–4761. DOI: 10.1021/ol502198e.
  • Fukata, Y.; Asano, K.; Matsubara, S. Procedure-controlled Enantioselectivity Switch in Organocatalytic 2-Oxazolidinone Synthesis. J. Am. Chem. Soc. 2013, 135, 12160–12163. DOI: 10.1021/ja407027e.
  • Reichardt, C. Rastvoriteli i Effekti Sredi v Organicheskoi Khimii, (Solvents and Solvent Effects in Organic Chemistry). Mir Moscow. 1991, 24–124.
  • Chigarina, K. M.; Alaverdiev, I. M. O.; Zalevskaya, S. I.; Andreeva, E. V.; Sapozhnikova, T. I.; Rychenkova, T. V.; Zhukova, O. P. Lifting-cream for Dry and Sensitive Skin. R.U. Patent 2,242,216, 2004.
  • Vishnyakova, T. P.; Golubeva, I. A.; Glebova, E. V. Substituted Ureas. Methods of Synthesis and Applications. Usp. Khim. 1985, 54, 429–449.
  • Vishnyakova, T. P.; Golubeva, I. A.; Glebova, E. V. Substituted Ureas. Methods of Synthesis and Applications. Russ. Chem. Rev. 1985, 54, 249–261. DOI: 10.1070/RC1985v054n03ABEH003022.
  • Saloutina, L. V.; Zapevalov, A. Y.; Kodess, M. I.; Slepukhin, P. A.; Saloutin, V. I.; Chupakhin, O. N. Synthesis of Fluorine Containing N-heterocycles Using Oxides of Terminal Perfluoroolefins and Urea. J. Fluorine Chem. 2012, 139, 16–22. DOI: 10.1016/j.jfluchem.2012.03.017.
  • Sarhandi, S.; Daghagheleh, M.; Vali, M.; Moghadami, R.; Vessally, E. New Insight in Hiyama Cross-coupling Reactions: Decarboxylative, Denitrogenative and Desulfidative Couplings: A Review. Chem. Rev. Lett. 2018, 1, 9–15.
  • Sarhandi, S.; Daghagheleh, M.; Vali, M.; Rahmani, Z.; Vessally, E. A Review on the CO2 Incorporation Reactions Using Arynes. Chem. Rev. Lett. 2018, 1, 23–30.
  • Vessally, E. A New Avenue to the Synthesis of Highly Substituted Pyrroles: Synthesis from N-propargylamines. RSC Adv. 2016, 6, 6, 18619–18631. DOI: 10.1039/C5RA20706A.
  • Saeidian, H.; Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M. D. A Review on Synthetic Applications of Oxime Esters. Curr. Org. Chem. 2017, 21, 249–271.
  • Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M. D. Novel Routes to Quinoline Derivatives from N-propargylamines. RSC Adv. 2016, 6, 6, 49730–49746. DOI: 10.1039/C6RA05221E.
  • Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M. D. New Page to Access Pyridine Derivatives: Synthesis from N-propargylamines. RSC Adv. 2016, 6, 71662–71675. DOI: 10.1039/C6RA08720E.
  • Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M. D. New Page to Access Pyrazines and Their Ring Fused Analogues: Synthesis from N-propargylamines. COS. 2017, 14, 557–567. DOI: 10.2174/1570179413666160818144816.
  • Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M. D. New Route to 1,4-Oxazepane and 1,4-Diazepane Derivatives: Synthesis from N-propargylamines. RSC Adv. 2016, 6, 99781–99793. DOI: 10.1039/C6RA20718A.
  • Soleimani-Amiri, S.; Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A. New Protocols to Access Imidazoles and Their Ring Fused Analogues: Synthesis from N-Propargylamines. RSC Adv. 2017, 7, 7079–7091.
  • Babazadeh, M.; Soleimani-Amiri, S.; Vessally, E.; Hosseinian, A.; Edjlali, L. Transition Metal-catalyzed [2 + 2+2] Cycloaddition of Nitrogen-linked 1,6-Diynes: A Straightforward Route to Fused Pyrrolidine Systems. RSC Adv. 2017, 7, 43716–43736. DOI: 10.1039/C7RA05398C.
  • Arshadi, S.; Vessally, E.; Edjlali, L.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E. N-Propargylamines: Versatile Building Blocks in the Construction of Thiazole Cores. Beilstein J. Org. Chem. 2017, 13, 625–638. DOI: 10.3762/bjoc.13.61.
  • Vessally, E.; Hosseinian, A.; Edjlali, L.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. Intramolecular Cyclization of N-propargyl Anilines: A New Synthetic Entry into Highly Substituted Indoles. J. Iran. Chem. Soc. 2017, 14, 2339–2353. DOI: 10.1007/s13738-017-1170-5.
  • Arshadi, S.; Vessally, E.; Edjlali, L.; Horbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. N-Propargylic β-enaminocarbonyls: Powerful and Versatile Building Blocks in Organic Synthesis. RSC Adv. 2017, 7, 13198–13211. DOI: 10.1039/C7RA00746A.
  • Vessally, E.; Hosseinian, A.; Edjlali, L.; Babazadeh, M.; Hosseinzadeh-Khanmiri, R. New Strategy for the Synthesis of Morpholine Cores: Synthesis from N-Propargylamines. Iran. J. Chem. Chem. Eng. 2017, 36, 1–13.
  • Arshadi, S.; Vessally, E.; Sobati, M.; Hosseinian, A.; Bekhradnia, A. Chemical Fixation of CO2 to N-propargylamines: A Straightforward Route to 2-Oxazolidinones. J. CO2 Util. 2017, 19, 120–129. DOI: 10.1016/j.jcou.2017.03.009.
  • Kusakabe, T.; Kawaguchi, K.; Kawamura, M.; Niimura, N.; Shen, R.; Takayama, H.; Kato, K. Cyclization-carbonylation Cyclization Coupling Reaction of Propargyl Ureas with Palladium(II)-bisoxazoline Catalyst. Molecules. 2012, 17, 9220–9230. DOI: 10.3390/molecules17089220.
  • Soleimani-Amiri, S.; Vessally, E.; Babazadeh, M.; Hosseinian, A.; Edjlali, L. Intramolecular Cyclization of N-allyl Propiolamides: A Facile Synthetic Route to Highly Substituted γ-Lactams (a Review). RSC Adv. 2017, 7, 28407–28418. DOI: 10.1039/C7RA03075D.
  • Vessally, E.; Babazadeh, M.; Hosseinian, A.; Edjlali, L.; Sreerama, L. Recent Advances in Synthesis of Functionalized β-lactams through Cyclization of n-Propargyl Amine/Amide Derivatives. COC. 2018, 22, 199–205. DOI: 10.2174/1385272821666170519113904.
  • Vessally, E.; Hosseinian, A.; Babazadeh, M.; Edjlali, L.; Hosseinzadeh-Khanmiri, R. Metal Catalyzed Carboxylative Coupling of Terminal Alkynes, Organohalides and Carbon Dioxide: A Novel and Promising Synthetic Strategy toward 2-Alkynoates (a Review). COC. 2018, 22, 315–322. DOI: 10.2174/1385272821666170619090707.
  • Vessally, E.; Nikpasand, M.; Ahmadi, S.; Nezhad, P. D. K.; Hosseinian, A. Transition Metal-Catalyzed Intramolecular Cyclization of N-Boc-protected Propargyl/Ethynyl Amines: A Novel and Convenient Access to 2-Oxazolidinone/Oxazolone Derivatives. J. Iran. Chem. Soc. 2019, 16, 617–627. DOI: 10.1007/s13738-018-1542-5.
  • Arshadi, S.; Vessally, E.; Hosseinian, A.; Soleimani-Amiri, S.; Edjlali, L. Three-component Coupling of CO2, Propargyl Alcohols, and Amines: An Environmentally Benign Access to Cyclic and Acyclic Carbamates (a Review). J. CO2 Util. 2017, 21, 108–118. DOI: 10.1016/j.jcou.2017.07.008.
  • Vessally, E.; Soleimani-Amiri, S.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. Chemical Fixation of CO2 to 2-Aminobenzonitriles: A Straightforward Route to Quinazoline-2,4-(1H,3H)-Diones with Green and Sustainable Chemistry Perspectives. J. CO2 Util. 2017, 21, 342–352. DOI: 10.1016/j.jcou.2017.08.006.
  • Arsadi, S.; Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Nanocatalysts for Chemical Transformation of Carbon Dioxide. J. CO2 Util. 2017, 21, 491–502.
  • Farshbaf, S.; Sreerama, L.; Khodayari, T.; Vessally, E. Propargylic Ureas as Powerful and Versatile Building Blocks in the Synthesis of Various Key Medicinal Heterocyclic Compounds. Chem. Rev. Lett. 2018, 1, 56–67.
  • Shachat, N.; Bagnell, J. J. Reactions of Propargyl Alcohols and Propargylamines with Isocyanates. J. Org. Chem. 1963, 28, 991–995. DOI: 10.1021/jo01039a028.
  • Proulx, C.; Lubell, W. D. N-amino-imidazolin-2-one Peptide Mimic Synthesis and Conformational Analysis. Org. Lett. 2012, 14, 4552–4555. DOI: 10.1021/ol302021n.
  • Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L.; Khosroshahi, E. S. Nanocatalysts for C-Se Cross-Coupling Reactions. RSC Adv. 2018, 8, 291–301.
  • Vessally, E.; Mohammadi, R.; Hosseinian, A.; Didehban, K.; Edjlali, L. S-arylation of 2-Mercaptobenzazoles: A Comprehensive Review. J. Sulfur Chem. 2018, 39, 443–463. DOI: 10.1080/17415993.2018.1436712.
  • Hosseinian, A.; Farshbaf, S.; Mohammadi, R.; Monfared, A.; Vessally, E. Advancements in Six-membered Cyclic Carbonate (1,3-Dioxan-2-one) Synthesis Utilizing Carbon Dioxide as a C1 Source. RSC Adv. 2018, 8, 17976–17988. DOI: 10.1039/c8ra01280f.
  • Peshkov, V. A.; Pereshivko, O. P.; Sharma, S.; Meganathan, T.; Parmar, V. S.; Ermolat’ev, D. S.; van der Eycken, E. V. Tetrasubstituted 2-Imidazolones via Ag(I)-catalyzed Cycloisomerization of Propargylic Ureas. J. Org. Chem. 2011, 76, 5867–5872. DOI: 10.1021/jo200789t.
  • Hosseinian, A.; Farshbaf, S.; Fekri, L. Z.; Nikpassand, M.; Vessally, E. Cross-dehydrogenative Coupling Reactions between P(O)-H and X-H (X = S, N, O, P) Bonds. Top. Curr. Chem 2018, 376, 23–42.
  • Nasab, F. A. H.; Fekri, L. Z.; Monfared, A.; Hosseinian, A.; Vessally, E. Recent Advances in Sulfur-nitrogen Bond Formation via Cross-dehydrogenative Coupling Reactions. RSC Adv. 2018, 8, 18456–18469. DOI: 10.1039/C8RA00356D.
  • Farshbaf, S.; Fekri, L. Z.; Nikpassand, M.; Mohammadi, R.; Vessally, E. Dehydrative Condensation of β-aminoalcohols with CO2: An Environmentally Benign Access to 2-Oxazolidinone Derivatives. J. CO2 Util. 2018, 25, 194–204. DOI: 10.1016/j.jcou.2018.03.020.
  • Hosseinian, A.; Ahmadi, S.; Monfared, A.; Nezhad, P. D.; Vessally, E. Nano-structured Catalytic Systems in Cyanation of Aryl Halides with K4[Fe(CN)4]. COC. 2018, 22, 1862–1874. DOI: 10.2174/1385272822666180831114702.
  • Hosseinian, A.; Zare Fekri, L.; Monfared, A.; Vessally, E.; Nikpassand, M. Transition-metal-catalyzed C-N Cross-coupling Reactions of N-unsubstituted Sulfoximines: A Review. J. Sulfur Chem. 2018, 39, 674–698. DOI: 10.1080/17415993.2018.1471142.
  • Nejati, K.; Ahmadi, S.; Nikpassand, M.; Nezhad, P. D. K.; Vessally, E. Diaryl Ethers Synthesis: Nano-catalysts in Carbon Oxygen Cross-coupling Reactions. RSC Adv. 2018, 8, 19125–19143. DOI: 10.1039/c8ra02818d.
  • Hosseinian, A.; Nasab, F. A. H.; Ahmadi, S.; Rahmani, Z.; Vessally, E.; Mohammadi, R. Cross-Dehydrogenative C-H/S-H Coupling Reactions. Top Curr. Chem. 2018, 376, 39–71. DOI: 10.1007/s41061-018-0217-0.
  • Hosseinian, A.; Nasab, F. A. H.; Ahmadi, S.; Rahmani, Z.; Vessally, E. Decarboxylative Cross-coupling Reactions for P(O)-C Bond Formation. RSC Adv. 2018, 8, 26383–26398. DOI: 10.1039/c8ra04557g.
  • Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L.; Rahmani, Z. Intramolecular Cyclization of Aryl Propargyl Ethers: A Straightforward and Convenient Approach to Benzofuran Derivatives. Curr. Org. Synth. 2018, 15, 972–981.
  • Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Synthesis of a Variety of Key Medicinal Heterocyclic Compounds via Chemical Fixation of CO2 onto o-Alkynylaniline Derivatives. J. CO2 Util. 2018, 23, 42–50.
  • Vessally, E.; Mohammadi, R.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. Three Component Coupling of Amines, Alkyl Halides and Carbon Dioxide: An Environmentally Benign Access to Carbamate Esters (Urethanes). J. CO2 Util. 2018, 24, 361–368. DOI: 10.1016/j.jcou.2018.01.015.
  • Vessally, E.; Didehban, K.; Mohammadi, R.; Hosseinian, A.; Babazadeh, M. Recent Advantages in the Metal (Bulk and Nano)-catalyzed S-arylation Reactions of Thiols with Aryl Halides in Water: A Perfect Synergy for Eco-compatible Preparation of Aromatic Thioethers. J. Sulfur Chem. 2018, 39, 332–349. DOI: 10.1080/17415993.2018.1436711.
  • Biginelli, P.; Gazz, P. Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones. Chim. Ital. 1893, 23, 360–416.
  • (a) Stadler, A.; Kappe, C. O. Microwave-mediated Biginelli Reactions Revisited. On the Nature of Rate and Yield Enhancements. J. Chem. Soc. Perkin Trans. 2. 2000, 7, 1363–1368. DOI: 10.1039/b002697m. (b) Kappe, C. O.; Stadler, A. In Organic Reactions; Overman, L. E., Ed.; Organic Reactions Inc., 2004; Vol. 63, pp 1–117.
  • (a) Xia, M.; Wang, Y. G. An Efficient Protocol for the Liquid-phase Synthesis of Methyl 3,4-Dihydro-pyrimidin-2(1H)-one-5-carboxylate Derivatives. Synthesis. 2003, 2, 0262–0266. DOI: 10.1055/s-2003-36816. (b) Quan, Z.-J.; Da, Y.; Zhang, Z.; Wang, X. PS-PEG-SO3H as an Efficient Catalyst for 3,4-Dihydropyrimidones via Biginelli Reaction. Catal. Commun. 2009, 10, 1146–1148. DOI: 10.1016/j.catcom.2008.12.017. (c) Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F. 12-Molybdophosphoric Acid: A Recyclable Catalyst for the Synthesis of Biginelli-type 3,4-dihydropyrimidine-2(1H)-ones. Catal. Commun. 2006, 7, 373–376. DOI: 10.1016/j.catcom.2005.12.007. (d) Heravi, M. M.; Derikvand, F.; Bamoharram, F. F. A Catalytic Method for Synthesis of Biginelli-type 3,4-Dihydropyrimidin-2(1H)-one Using 12-Tungstophosphoric Acid. J. Mol. Catal. A Chem. 2005, 242, 173–175. DOI: 10.1016/j.molcata.2005.08.009.
  • (a) Kappe, C. O. 100 Years of the Biginelli Dihydropyrimidine Synthesis. Tetrahedron. 1993, 49, 6937–6963. (b) Safari, J.; Zarnegar, Z. Brønsted Acidic Ionic Liquid Based Magnetic Nanoparticles: A New Promoter for the Biginelli Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones. New J. Chem. 2014, 38, 358–365. DOI: 10.1039/C3NJ01065A.
  • Kappe, C. O.; Falsone, F. S. The Biginelli Dihydropyrimidinone Synthesis Using Polyphosphate Ester as a Mild and Efficient Cyclocondensation/Dehydration Reagent. Synlett. 1998, 1998, 718–720. DOI: 10.1055/s-1998-1764.
  • Hu, E. H.; Sidler, D. R.; Dolling, U. H. Unprecedented Catalytic Three Component One-pot Condensation Reaction: An Efficient Synthesis of 5-Alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J. Org. Chem. 1998, 63, 3454–3457. DOI: 10.1021/jo970846u.
  • (a) Ranu, B. C.; Hajra, A.; Jana, U. Indium(III) Chloride-catalyzed One-pot Synthesis of Dihydropyrimidinones by a Three-component Coupling of 1,3-Dicarbonyl Compounds, Aldehydes, and Urea: An Improved Procedure for the Biginelli Reaction. J. Org. Chem. 2000, 65, 6270–6272. DOI: 10.1021/jo000711f. (b) Piqani, B.; Zhang, W. Synthesis of Diverse Dihydropyrimidine-related Scaffolds by Fluorous Benzaldehyde-based Biginelli Reaction and Post-Condensation Modifications. Beilstein J. Org. Chem. 2011, 7, 1294–1298. DOI: 10.3762/bjoc.7.150.
  • Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T. N. B. Bismuth(III)-catalyzed Synthesis of Dihydropyrimidinones: Improved Protocol Conditions for the Biginelli Reaction. Synlett. 2001, 2001, 0863–0865. DOI: 10.1055/s-2001-14587.
  • Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. One-pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Using Lanthanum Chloride as a Catalyst. Tetrahedron Lett. 2000, 41, 9075–9078. DOI: 10.1016/S0040-4039(00)01645-2.
  • Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide Triflate Catalyzed Biginelli Reaction. One-pot Synthesis of Dihydropyrimidinones under Solvent-free Conditions. J. Org. Chem. 2000, 65, 3864–3868. DOI: 10.1021/jo9919052.
  • Atwal, K. S.; Rovnyak, G. C.; O’Reilly, B. C.; Schwartz, J. Substituted 1,4-Dihydropyrimidines. 3. Synthesis of Selectively Functionalized 2-Hetero-1,4-dihydropyrimidines. J. Org. Chem. 1989, 54, 5898–5907. DOI: 10.1021/jo00286a020.
  • Stefani, H. A.; Gatti, P. M. 3,4-Dihydropyrimidin-2(1H)-ones: Fast Synthesis under Microwave Irradiation in Solvent Free Conditions. Synth. Commun. 2000, 30, 2165–2173. DOI: 10.1080/00397910008087395.
  • Kappe, C. O.; Kumar, D.; Varma, R. S. Microwave-assisted High-speed Parallel Synthesis of 4-Aryl-3,4-dihydropyrimidin-2(1H)-ones Using a Solvent Less Biginelli Condensation Protocol. Synthesis. 1999, 10, 1799–1803.
  • (a) Wipf, P.; Cunningham, A. A Solid Phase Protocol of the Biginelli Dihydropyrimidine Synthesis Suitable for Combinatorial Chemistry. Tetrahedron Lett. 1995, 36, 7819–7822. DOI: 10.1016/0040-4039(95)01660-A. (b) Tajbakhsh, M.; Mohajerani, B.; Heravi, M. M.; Ahmadi, A. N. Natural HEU Type Zeolite Catalyzed Biginelli Reaction for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-one Derivatives. J. Mol. Catal. A Chem. 2005, 236, 216–219. DOI: 10.1016/j.molcata.2005.04.033.
  • Studer, A.; Jeger, P.; Wipf, P.; Curran, D. P. Fluorous Synthesis: Fluorous Protocols for the Ugi and Biginelli Multicomponent Condensations. J. Org. Chem. 1997, 62, 2917–2924. DOI: 10.1021/jo970095w.
  • (a) Yadav, J. S.; Reddy, B. V. S.; Srinivas, R.; Venugopal, C.; Ramalingam, T. LiClO4-Catalyzed One-pot Synthesis of Dihydropyrimidinones: An Improved Protocol for Biginelli Reaction. Synthesis. 2001, 9, 1341–1345. (b) Bhat, M. A.; Al-Omar, M. A.; Naglah, A. M.; Al-Dhfyan, A. Biginelli Synthesis of Novel Dihydropyrimidinone Derivatives Containing Phthalimide Moiety. J. Chem. 2020, 2020, 1–5. DOI: 10.1155/2020/4284628.
  • (a) Kumar, K. A.; Kasthuraiah, M.; Reddy, C. S.; Reddy, C. D. Mn(OAc)3·2H2O-mediated Three-component, One-pot, Condensation Reaction: An Efficient Synthesis of 4-Aryl-substituted 3,4-dihydropyrimidin-2-ones. Tetrahedron Lett. 2001, 42, 7873–7875. DOI: 10.1016/S0040-4039(01)01603-3. (b) Gong, L.-Z.; Gong, L.-Z.; Chen, X.-H.; Xu, X.-Y. Asymmetric Organocatalytic Biginelli Reactions: A New Approach to Quickly Access Optically Active 3,4-Dihydropyrimidin-2-(1H)-ones. Chemistry. 2007, 13, 8920–8926. DOI: 10.1002/chem.200700840.
  • (a) Dondoni, A.; Massi, A. Parallel Synthesis of Dihydropyrimidinones Using Yb(III)-resin and Polymer-supported Scavengers under Solvent-free Conditions. A Green Chemistry Approach to the Biginelli Reaction. Tetrahedron Lett. 2001, 42, 7975–7978. DOI: 10.1016/S0040-4039(01)01728-2. (b) Wan, J.-P.; Pan, Y. Chemo-/regioselective Synthesis of 6-Unsubstituted Dihydropyrimidinones, 1,3-Thiazines and Chromones via Novel Variants of Biginelli Reaction. Chem. Commun. 2009, 2768–2770. DOI: 10.1039/b901112a.
  • (a) Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Raj, K. S.; Prasad, A. R. Ultrasound-accelerated Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones with Ceric Ammonium Nitrate. J. Chem. Soc. Perkin Trans. 1. 2001, 16, 1939–1941. (b) Nandi, G. C.; Samai, S.; Singh, M. S. Biginelli and Hantzsch-type Reactions Leading to Highly Functionalized Dihydropyrimidinone, Thiocoumarin, and Pyridopyrimidinone Frameworks via Ring Annulation with β-Oxodithioesters. J. Org. Chem. 2010, 75, 7785–7795. DOI: 10.1021/jo101572c.
  • (a) Peng, J.; Deng, Y. Ionic Liquids Catalyzed Biginelli Reaction under Solvent-free Conditions. Tetrahedron Lett. 2001, 42, 5917–5919. DOI: 10.1016/S0040-4039(01)01139-X. (b) Legeay, J.-C.; Eynde, J. J. V.; Bazureau, J. P. Ionic Liquid Phase Technology Supported the Three Component Synthesis of Hantzsch 1,4-Dihydropyridines and Biginelli 3,4-Dihydropyrimidin-2(1H)-ones under Microwave Dielectric Heating. Tetrahedron. 2005, 61, 12386–12397. DOI: 10.1016/j.tet.2005.09.118.
  • Nelson, J. H.; Howells, P. N.; DeLullo, G. C.; Landen, G. L.; Henry, R. A. Nickel-catalyzed Michael Additions of. Beta-dicarbonyls. J. Org. Chem. 1980, 45, 1246–1249. DOI: 10.1021/jo01295a017.
  • Christoffers, J. Iron(III) Catalysis of the Michael Reaction of 1,3-Dicarbonyl Compounds and Enones. Chem. Commun. 1997, 10, 943–944.
  • Christoffers, J.; Rößler, U.; Werner, T. Construction of Quaternary Stereocenters by Nickel-catalysis of Asymmetric Michael Reactions. Eur. J. Org. Chem. 2000, 5, 701–705.
  • Christoffers, J. Catalysis of the Michael Reaction and the Vinylogous Michael Reaction by Ferric Chloride Hexahydrate. Synlett. 2001, 2001, 0723–0732. DOI: 10.1055/s-2001-14578.
  • Lu, J.; Ma, H. Iron(III)-catalysed Synthesis of Dihydropyrimidinones. Improved Conditions for the Biginelli Reaction. Synlett. 2000, 1, 63–64.
  • Eynde, J. J. V.; Audiart, N.; Canonne, V.; Michel, S.; Haverbeke, Y. V.; Kapple, C. O. Synthesis and Aromatization of Dihydropyrimidines Structurally Related to Calcium Channel Modulators of the Nifedipine-type. Heterocycles. 1997, 45, 1967–1979.
  • (a) Folkers, K.; Harwood, H. J.; Johnson, T. B. Researches on Pyrimidines. CXXX. Synthesis of 2-Keto-1,2,3,4-tetrahydropyrimidines. J. Am. Chem. Soc. 1932, 54, 3751–3758. DOI: 10.1021/ja01348a040. (b) Mabry, J.; Ganem, B. Studies on the Biginelli Reaction: A Mild and Selective Route to 3,4-Dihydropyrimidin-2(1H)-ones via Enamine Intermediates. Tetrahedron Lett. 2006, 47, 55–56. DOI: 10.1016/j.tetlet.2005.10.124.
  • (a) Folkers, K.; Johnson, T. B. Researches on Pyrimidines. CXXXIV. The Reaction of Phenylacetaldehyde and Acetophenone with Urea. J. Am. Chem. Soc. 1933, 55, 3361–3368. DOI: 10.1021/ja01335a053. (b) Azizian, J.; Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R. KAl(SO4)2·12H2O Supported on Silica Gel as a Novel Heterogeneous System Catalyzed Biginelli Reaction: One-pot Synthesis of Dihydropyrimidinones under Solvent-free Conditions. Appl. Catal. A Gen. 2006, 300, 85–88. DOI: 10.1016/j.apcata.2005.11.001.
  • (a) Singh, K.; Singh, J.; Deb, P. K.; Singh, H. An Expedient Protocol of the Biginelli Dihydropyrimidine Synthesis Using Carbonyl Equivalents. Tetrahedron. 1999, 55, 12873–12880. DOI: 10.1016/S0040-4020(99)00760-7. (b) Rao, G. B. D.; Acharya, B. N.; Verma, S. K.; Kaushik, M. P. N,N’-Dichlorobis(2,4,6-trichlorophenyl)Urea (CC-2) as a New Reagent for the Synthesis of Pyrimidone and Pyrimidine Derivatives via Biginelli Reaction. Tetrahedron Lett. 2011, 52, 809–812. DOI: 10.1016/j.tetlet.2010.12.039.
  • (a) Abelman, M.; Smith, S.; James, D. Cyclic Ketones and Substituted α-Keto Acids as Alternative Substrates for Novel Biginelli-like Scaffold Syntheses. Tetrahedron Lett. 2003, 44, 4559–4562. DOI: 10.1016/S0040-4039(03)00985-7. (b) Zhu, Y.; Huang, S.; Pan, Y. Highly Chemoselective Multicomponent Biginelli-type Condensations of Cycloalkanones, Urea or Thiourea and Aldehydes. Eur. J. Org. Chem. 2005, 11, 2354–2367.
  • Shaabani, A.; Bazgir, A. Microwave-assisted Efficient Synthesis of Spiro-fused Heterocycles under Solvent-free Conditions. Tetrahedron Lett. 2004, 45, 2575–2577. DOI: 10.1016/j.tetlet.2004.01.154.
  • Paraskar, A. S.; Dewkar, G. K.; Sudalai, A. Cu(OTf)2: A Reusable Catalyst for High-Yield Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Tetrahedron Lett. 2003, 44, 3305–3308. DOI: 10.1016/S0040-4039(03)00619-1.
  • Byk, G.; Gottlieb, H. E.; Herscovici, J.; Mirkin, F. New Regioselective Multicomponent Reaction: One Pot Synthesis of Spiro Heterobicyclic Aliphatic Rings. J. Comb. Chem. 2000, 2, 732–735. DOI: 10.1021/cc000056p.
  • Zigeuner, G.; Eisenreich, V.; Weichsel, H.; Adam, W. [Cyclohexan-1,4’(1’H)-Chinazolin]-2’(3’H)-One. Monatsh. Chem. 1970, 101, 1731–1744. DOI: 10.1007/BF01152087.
  • Kappe, C. O. A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for N-acyliminium Ion Intermediate. J. Org. Chem. 1997, 62, 7201–7204. DOI: 10.1021/jo971010u.
  • Kolvari, E.; Koukabi, N.; Armandpour, O. A Simple and Efficient Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones via Biginelli Reaction Catalyzed by Nanomagnetic-supported Sulfonic Acid. Tetrahedron. 2014, 70, 1383–1386. DOI: 10.1016/j.tet.2013.10.085.
  • (a) Shen, Z. L.; Xu, X. P.; Ji, S. J. Brønsted Base-catalyzed One-pot Three-component Biginelli Type Reaction: An Efficient Synthesis of 4,5,6-Triaryl-3,4-dihydropyrimidin-2(1H)-one and Mechanistic Study. J. Org. Chem. 2010, 75, 1162–1167. DOI: 10.1021/jo902394y. (b) Kolosov, M. A.; Orlov, V. D.; Beloborodov, D. A.; Dotsenko, V. V. A Chemical Placebo: NaCl as an Effective, Cheapest, Non-acidic and Greener Catalyst for Biginelli-type 3,4-Dihydropyrimidin-2(1H)-Ones (-Thiones) Synthesis. Mol. Divers. 2009, 13, 5–25. DOI: 10.1007/s11030-008-9094-8. (c) Polshettiwar, V.; Varma, R. S. Biginelli Reaction in Aqueous Medium: A Greener and Sustainable Approach to Substituted 3,4-Dihydropyrimidin-2(1H)-ones. Tetrahedron Lett. 2007, 48, 7343–7346. DOI: 10.1016/j.tetlet.2007.08.031.
  • (a) Kappe, C. O. Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog. Acc. Chem. Res. 2000, 33, 879–888. DOI: 10.1021/ar000048h. (b) Kumar, B. R. P.; Sankar, G.; Baig, R. B. N.; Chandrashekaran, S. Novel Biginelli Dihydropyrimidines with Potential Anticancer Activity: A Parallel Synthesis and CoMSIA Study. Eur. J. Med. Chem. 2009, 44, 4192–4198. DOI: 10.1016/j.ejmech.2009.05.014.
  • Kappe, C. O. Biologically Active Dihydropyrimidones of the Biginelli-type - A Literature Survey. Eur. J. Med. Chem. 2000, 35, 1043–1052. DOI: 10.1016/s0223-5234(00)01189-2.
  • Varala, R.; Alam, M.; Adapa, S. R. Bismuth Triflate Catalyzed One-pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones: An Improved Protocol for the Biginelli Reaction. Synlett 2003, 1, 67–70.
  • Byk, G.; Kabha, E. Anomalous Regioselective Four-Member Multicomponent Biginelli Reaction II: One-pot Parallel Synthesis of Spiro Heterobicyclic Aliphatic Rings. J. Comb. Chem. 2004, 6, 596–603. DOI: 10.1021/cc049962i.
  • (a) Shaabani, A.; Bazgir, A.; Teimouri, F. Ammonium Chloride-catalyzed One-pot Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones under Solvent-free Conditions. Tetrahedron Lett. 2003, 44, 857–859. DOI: 10.1016/S0040-4039(02)02612-6. (b) Wan, J.-P.; Liu, Y. Synthesis of Dihydropyrimidinones and Thiones by Multicomponent Reactions: Strategies beyond the Classical Biginelli Reaction. Synthesis. 2010, 23, 3943–3953.
  • (a) Reddy, C.; Mahesh, M.; Raju, P. V. K.; Babu, T.; Reddy, V. ( IV) Chloride Catalyzed One-pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Tetrahedron Lett. 2002, 43, 2657–2659. DOI: 10.1016/S0040-4039(02)00280-0. (b) Ahmed, N.; Van Lier, J. E. TaBr5-catalyzed Biginelli Reaction: One-pot Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones/thiones under Solvent-free Conditions. Tetrahedron Lett. 2007, 48, 5407–5409.
  • (a) Maiti, G.; Kundu, P.; Guin, C. One-pot Synthesis of Dihydropyrimidinones Catalysed by Lithium Bromide: An Improved Procedure for the Biginelli Reaction. Tetrahedron Lett. 2003, 44, 2757–2758. DOI: 10.1016/S0040-4039(02)02859-9. (b) Chitra, S.; Pandiarajan, K. Calcium Fluoride: An Efficient and Reusable Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Their Corresponding 2(1H)Thione: An Improved High Yielding Protocol for the Biginelli Reaction. Tetrahedron Lett. 2009, 50, 2222–2224. DOI: 10.1016/j.tetlet.2009.02.162.
  • Li, J.-T.; Han, J.-F.; Yang, J.-H.; Li, T.-S. An Efficient Synthesis of 3,4-Dihydropyrimidin-2-Ones Catalyzed by NH2SO3H under Ultrasound Irradiation. Ultrason. Sonochem. 2003, 10, 119–122. DOI: 10.1016/S1350-4177(03)00092-0.
  • Lu, J.; Bai, Y. Catalysis of the Biginelli Reaction by Ferric and Nickel Chloride Hexahydrates. One-pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Synthesis. 2002, 2002, 466–470. DOI: 10.1055/s-2002-20956.
  • (a) Yarim, M.; Sarac, S.; Kilic, F. S.; Erol, K. Synthesis and in Vitro Calcium Antagonist Activity of 4-Aryl-7,7-dimethyl/1,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-dione Derivatives. Farmaco. 2003, 58, 17–24. DOI: 10.1016/S0014-827X(02)00009-5. (b) Debache, A.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. A One-pot Biginelli Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones/thiones Catalyzed by Triphenylphosphine as Lewis Base. Tetrahedron Lett. 2008, 49, 6119–6121. DOI: 10.1016/j.tetlet.2008.08.016.
  • (a) Vessally, E.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E.; Haghi, M. E.; Bekhradnia, A. Domino Carbometalation/Coupling Reactions of N-arylpropiolamides: A Novel and Promising Synthetic Strategy toward Stereocontrolled Preparation of Highly Substituted 3-Methyleneindolinones. RSC Adv. 2017, 7, 19061–19072. DOI: 10.1039/C7RA01371J. (b) Zhao, W.; Huang, M.; Li, S.; Liu, Y.; Liu, Z.; Ying, A. One-pot Synthesis of 3,4-Dihydropyrimidine-2-one Derivatives via Biginelli Reactions Catalyzed by SnCl2@MNPs. Chinese J. Org. Chem. 2021, 41, 2743–2749. DOI: 10.6023/cjoc202101015. (c) Russowsky, D.; Lopes, F. A.; Silva, VSSd.; Canto, K. F. S.; D'Oca, M. G. M.; Godoi, M. N. Multicomponent Biginelli’s Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Promoted by SnCl2.2H2O. J. Braz. Chem. Soc 2004, 15, 165–169. DOI: 10.1590/S0103-50532004000200002.
  • (a) Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Intramolecular Ipso-cyclization of N-arylpropiolamides: A Novel and Straightforward Synthetic Approach for Azaspiro [4.5]Decatrien-2-ones. Curr. Org. Chem. 2018, 22, 286–297. (b) Huang, Y.; Yang, F.; Zhu, C. Highly Enantioselective Biginelli Reaction Using a New Chiral Ytterbium Catalyst: Asymmetric Synthesis of Dihydropyrimidines. J. Am. Chem. Soc. 2005, 127, 16386–16387. DOI: 10.1021/ja056092f. (c) Wang, Y.; Yang, J. H.; Yu, J.; Miao, Z.; Miao, Z.; Chen, R. Highly Enantioselective Biginelli Reaction Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts: Asymmetric Synthesis of Dihydropyrimidines. Adv. Synth. Catal. 2009, 351, 3057–3062. DOI: 10.1002/adsc.200900597.
  • (a) Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Intramolecular Cyclization of n-Arylpropiolamides: A New Strategy for the Synthesis of Functionalized 2-Quinolones. Curr. Org. Chem. 2017, 21, 2561–2572. (b) Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@Mesoporous SBA-15: A Robust and Magnetically Recoverable Catalyst for One-pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via the Biginelli Reaction. Dalton Trans. 2012, 41, 6173–6181. DOI: 10.1039/c2dt30106g.
  • (a) Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Chemical Fixation of CO2 with Aniline Derivatives: A New Avenue to the Synthesis of Functionalized Azole Compounds (a Review). J. CO2 Util. 2017, 21, 480–490. DOI: 10.1016/j.jcou.2017.08.013. (b) Cepanec, I.; Litvić, M.; Filipan-Litvić, M.; Grüngold, I. Antimony(III) Chloride-catalysed Biginelli Reaction: A Versatile Method for the Synthesis of Dihydropyrimidinones through a Different Reaction Mechanism. Tetrahedron. 2007, 63, 11822–11827. DOI: 10.1016/j.tet.2007.09.045.
  • Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Chemical Fixation of CO2 to Allylic (α-Allenylic) Amines: A Green Route to Synthesis of Functionalized 2-Oxazolidones. MROC. 2018, 15, 315–323. DOI: 10.2174/1570193X15666171227160258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.