Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 22
280
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis and antimicrobial activity of piperazine containing substituted 1,2,3-triazoles with amide linkage

, &
Pages 2149-2162 | Received 30 May 2022, Published online: 20 Oct 2022

References

  • Kumar Tittal, R.; Vikas, G. D.; Rani, P.; Lal, K.; Kumar, A. Synthesis, Antimicrobial Activity, Molecular Docking and DFT Study: Aryl‐carbamic Acid 1‐Benzyl‐1 H‐[1,2,3]triazol‐4‐ylmethyl Esters. Chem. Select. 2020, 5, 6723–6729. DOI: 10.1002/slct.202001547.
  • Halimehjani, A. Z.; Badali, E. DABCO Bond Cleavage for the Synthesis of Piperazine Derivatives. RSC Adv. 2019, 9, 36386–36409. DOI: 10.1039/C9RA07870C.
  • Xu, M.; Peng, Y.; Zhu, L.; Wang, S.; Ji, J.; Rakesh, K. P. Triazole Derivatives as Inhibitors of Alzheimer’s Disease: Current Developments and Structure-activity Relationships. Eur. J. Med. Chem. 2019, 180, 656–672. DOI: 10.1016/j.ejmech.2019.07.059.
  • Lal, K.; Kaushik, C. P.; Kumar, A. Antimicrobial Evaluation, QSAR and Docking Studies of Amide-linked 1,4-Disubstituted 1,2,3-Bistriazoles. Med. Chem. Res. 2015, 24, 3258–3271. DOI: 10.1007/s00044-015-1378-9.
  • Kandula, M. K. R.; Gundluru, M.; Nemallapudi, B. R.; Gundala, S.; Kotha, P.; Zyryanov, G. V.; Chadive, S.; Cirandur, S. R. Synthesis, Antioxidant Activity, and α‐Glucosidase Enzyme Inhibition of α‐Aminophosphonate Derivatives Bearing Piperazine‐1,2,3‐triazole Moiety. J Heterocyclic Chem. 2021, 58, 172–181. DOI: 10.1002/jhet.4157.
  • Kaushik, C. P.; Sangwan, J. Regioselective Synthesis, Antibacterial, and Antioxidant Activities of Ester-linked 1,4-Disubstituted 1,2,3-Triazoles. Monatsh Chem. 2020, 151, 807–819. DOI: 10.1007/s00706-020-02604-7.
  • Aouad, M. R.; Soliman, M. A.; Alharbi, M. O.; Bardaweel, S. K.; Sahu, P. K.; Ali, A. A.; Messali, M.; Rezki, N.; Al-Soud, Y. A. Design, Synthesis and Anticancer Screening of Novel Benzothiazole-piperazine-1,2,3-triazole Hybrids. Molecules. 2018, 23, 2788. DOI: 10.3390/molecules23112788.
  • Alraqa, S. Y.; Alharbi, K.; Aljuhani, A.; Rezki, N.; Aouad, M. R.; Ali, I. Design, Click Conventional and Microwave Syntheses, DNA Binding, Docking and Anticancer Studies of Benzotriazole-1,2,3-triazole Molecular Hybrids with Different Pharmacophores. J. Mol. Struct. 2021, 1225, 129192. DOI: 10.1016/j.molstruc.2020.129192.
  • Kaushik, C. P.; Sangwan, J.; Luxmi, R.; Kumar, D.; Kumar, D.; Das, A.; Kumar, A.; Singh, D. Design, Synthesis, Anticancer and Antioxidant Activities of Amide Linked 1,4-Disubstituted 1,2,3-Triazoles. J. Mol. Struct. 2021, 1226, 129255. DOI: 10.1016/j.molstruc.2020.129255.
  • El Bourakadi, K.; Mekhzoum, M. E. M.; Saby, C.; Morjani, H.; Chakchak, H.; Merghoub, N.; Qaiss, A. E. K.; Bouhfid, R. Synthesis, Characterization and in Vitro Anticancer Activity of Thiabendazole-derived 1,2,3-Triazole Derivatives. New J. Chem. 2020, 44, 12099–12106. DOI: 10.1039/C9NJ05685H.
  • Assis, S. P. D. O.; Silva, M. T. D.; Silva, F. T. D.; Sant’Anna, M. P.; Tenório, C. M. B. D. A.; Santos, C. F. B. D.; Fonseca, C. S. M. D.; Seabra, G.; Lima, V. L. M.; Oliveira, R. N. D. Design and Synthesis of Triazole-phthalimide Hybrids with Anti-inflammatory Activity. Chem. Pharm. Bull. 2019, 67, 96–105. DOI: 10.1248/cpb.c18-00607.
  • Lal, K.; Poonia, N.; Kumar, A. Res. Chem. Intermed. 2022, 48, 1577–1592. DOI: 10.1007/s11164-021-04653-x.
  • Govindaiah, S.; Sreenivasa, S.; Ramakrishna, R. A.; Rao, T. M. C.; Nagabhushana, H. Regioselective Synthesis, Antibacterial, Molecular Docking and Fingerprint Applications of 1-Benzhydrylpiperazine Derivatized 1,4-Disubstituted 1,2,3-Triazoles. Chem. Select. 2018, 3, 8111–8117. DOI: 10.1002/slct.201801364.
  • Mazzotta, S.; Cebrero-Cangueiro, T.; Frattaruolo, L.; Vega-Holm, M.; Carretero-Ledesma, M.; Sánchez-Céspedes, J.; Cappello, A. R.; Aiello, F.; Pachon, J.; Vega-Perez, J. M.; et al. Exploration of Piperazine-derived Thioureas as Antibacterial and Anti-inflammatory Agents. In Vitro Evaluation against Clinical Isolates of Colistin-resistant Acinetobacter Baumannii. Bioorg. Med. Chem. Lett. 2020, 30, 127411. DOI: 10.1016/j.bmcl.2020.127411.
  • Das, A.; Adak, A. K.; Ponnapalli, K.; Lin, C. H.; Hsu, K. C.; Yang, J. M.; Hsu, T. A.; Lin, C. C. Design and Synthesis of 1,2,3-Triazole-containing N-acyl Zanamivir Analogs as Potent Neuraminidase Inhibitors. Eur. J. Med. Chem. 2016, 123, 397–406. DOI: 10.1016/j.ejmech.2016.07.064.
  • Artyushin, O. I.; Sharova, E. V.; Vinogradova, N. M.; Genkina, G. K.; Moiseeva, A. A.; Klemenkova, Z. S.; Orshanskaya, I. R.; Shtro, A. A.; Kadyrova, R. A.; Zarubaev, V. V.; et al. Synthesis of Camphecene Derivatives Using Click Chemistry Methodology and Study of Their Antiviral Activity. Bioorg. Med. Chem. Lett. 2017, 27, 2181–2184. DOI: 10.1016/j.bmcl.2017.03.051.
  • Kaushik, C. P.; Chahal, M. Synthesis, Antimalarial and Antioxidant Activity of Coumarin Appended 1,4-Disubstituted 1,2,3-Triazoles. Monatsh Chem. 2021, 152, 1001–1012. DOI: 10.1007/s00706-021-02821-8.
  • Brandao, G. C.; Missias, F. C. R.; Arantes, L. M.; Soares, L. F.; Roy, K. K.; Doerksen, R. J.; de Oliveira, A. B.; Pereira, G. P. Antimalarial Naphthoquinones. Synthesis via Click Chemistry, in Vitro Activity, Docking to PfDHODH and SAR of Lapachol-based Compounds. Eur. J. Med. Chem. 2018, 145, 191–205. DOI: 10.1016/j.ejmech.2017.12.051.
  • Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current Scenario of Ferrocene-containing Hybrids for Antimalarial Activity. Eur. J. Med. Chem. 2020, 185, 111791. DOI: 10.1016/j.ejmech.2019.111791.
  • Khare, S. P.; Deshmukh, T. R.; Sangshetti, J. N.; Krishna, V. S.; Sriram, D.; Khedkar, V. M.; Shingate, B. B. Design, Synthesis and Molecular Docking Studies of Novel Triazole‐chromene Conjugates as Antitubercular, Antioxidant and Antifungal Agents. Chemistry Select 2018, 3, 13113–13122. DOI: 10.1002/slct.201801859.
  • Girase, P. S.; Dhawan, S.; Kumar, V.; Shinde, S. R.; Palkar, M. B.; Karpoormath, R. An Appraisal of Anti-mycobacterial Activity with Structure-activity Relationship of Piperazine and Its Analogues: A Review. Eur. J. Med. Chem. 2021, 210, 112967. DOI: 10.1016/j.ejmech.2020.112967.
  • Huisgen, R. Kinetics and Mechanism of 1,3-Dipolr Cycloadditions. Angew. Chem. Int. Ed. Engl. 1963, 2, 633–645. DOI: 10.1002/anie.196306331.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. 2002, 114, 2708–2711. DOI: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0.
  • Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(i)-catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. DOI: 10.1021/jo011148j.
  • Ackermann, L.; Potukuchi, H. K. Regioselective Syntheses of Fully-substituted 1,2,3-Triazoles: The CuAAC/C-H Bond Functionalization Nexus. Org. Biomol. Chem. 2010, 8, 4503–4513. DOI: 10.1039/C0OB00212G.
  • Ahmed, F.; Xiong, H. Recent Developments in 1,2,3-Triazole-based Chemosensors. Dyes Pigm. 2021, 185, 108905. DOI: 10.1016/j.dyepig.2020.108905.
  • Mahadari, M. K.; Jennepalli, S.; Tague, A. J.; Putsathit, P.; Hutton, M. L.; Hammer, K. A.; Knight, D. R.; Riley, T. V.; Lyras, D.; Keller, P. A.; Pyne, S. G. Cationic Peptidomimetic Amphiphiles Having a N-aryl- or N-naphthyl-1,2,3-triazole Core Structure Targeting Clostridioides (Clostridium) Difficile: Synthesis, Antibacterial Evaluation, and an in Vivo C. difficile Infection Model. Antibiotics. 2021, 10, 913. DOI: 10.3390/antibiotics10080913.
  • Xia, M.; Chen, Y.; Chen, Z.; Yu, W.; Cheng, H.; Feng, C.; Ni, H.; Wang, B.; K. Zhao, K.; Hu, P. 1,2,3-Triazole Lamellar Liquid Crystal and Its Non-covalent Palladium Complex Dimer: Structure, Mesomorphism and Self-assembly Properties. Liq. Cryst. 2022, 49, 72–84. DOI: 10.1080/02678292.2021.1944358.
  • Bhoomireddy, R. P. R.; Narla, L. B.; Peddiahgari, V. G. R. Green Synthesis of 1,2,3-Triazoles via Cu 2 O NPs on Hydrogen Trititanate Nanotubes Promoted 1,3-Dipolar Cycloadditions. Appl. Organometal. Chem. 2019, 33, e4752. DOI: 10.1002/aoc.4752.
  • Wang, X.; Zhang, X.; Ding, S. 1,2,3-Triazole-based Sequence-defined Oligomers and Polymers. Polym. Chem. 2021, 12, 2668–2688. DOI: 10.1039/D1PY00123J.
  • Kumar, A.; Pandey, P. S. Anion Recognition by 1,2,3-Triazolium Receptors: Application of Click Chemistry in Anion Recognition. Org. Lett. 2008, 10, 165–168. DOI: 10.1021/ol702457w.
  • Kaushik, C. P.; Pahwa, A. Convenient Synthesis, Antimalarial and Antimicrobial Potential of Thioethereal 1,4-Disubstituted 1,2,3-Triazoles with Ester Functionality. Med. Chem. Res. 2018, 27, 458–469. DOI: 10.1007/s00044-017-2072-x.
  • Kaushik, C. P.; Luxmi, R. Synth. Commun. 2017, 54, 3618–3625. DOI: 10.1002/jhet.
  • Kaushik, C. P.; Sangwan, J. Synthesis, Characterization and Antibacterial Activity of the Thioether Linked 1,2,3-Triazoles. Synth. Commun. 2021, 51, 3403–3415. DOI: 10.1080/00397911.2021.1974040.
  • MarvinSketch 19.19, 2019. ChemAxon. http://www.chemaxon.com.
  • Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Meng, E. C.; Couch, G. S.; Croll, T. I.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021, 30, 70–82. DOI: 10.1002/pro.3943.
  • Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. DOI: 10.1002/jcc.20084.
  • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334.
  • Dassault Systèmes BIOVIA. Discovery Studio Visualizer, v17.2.0.16349; DassaultSystèmes: San Diego, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.