Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 23
139
Views
0
CrossRef citations to date
0
Altmetric
Articles

Facile synthesis and antimicrobial activity of pyrazol-4-yl- and 2H-chromene-based substituted anilines via Michael addition followed by aromatization

, , &
Pages 2219-2229 | Received 01 Jul 2022, Published online: 20 Oct 2022

References

  • Müller, T. J.; Bunz, U. H. Functional Organic Materials: syntheses, Strategies and Applications; John Wiley & Sons: Weinheim, 2007.
  • Singh, F. V.; Vatsyayan, R.; Roy, U.; Goel, A. Arylanthranilodinitriles: A New Biaryl Class of Antileishmanial Agents. Bioorg. Med. Chem. Lett. 2006, 16, 2734–2737. DOI: 10.1016/j.bmcl.2006.02.012.
  • Chen, X.-H.; Zhao, Z.; Liu, Y.; Lu, P.; Wang, Y.-G. Synthesis and Properties of 1-(4-Aminophenyl)-2,4-Dicyano-3-Diethylamino-9,9-Diethylfluorenes: Potential Fluorescent Material. Chem. Lett. 2008, 37, 570–571. DOI: 10.1246/cl.2008.570.
  • Cardozo, T.; Nascimento, M. New Class of Molecules Predicted to Exhibit Non-Linear Optical Properties. J. Mater. Sci. 2005, 40, 3549–3551. DOI: 10.1007/s10853-005-2883-x.
  • Borate, H. B.; Kudale, A. S.; Agalave, S. G. Synthesis of Substituted 2,6-Dicyanoanilines and Related Compounds. A Review. Org. Prep. Proced. Int. 2012, 44, 467–521. DOI: 10.1080/00304948.2012.715055.
  • Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. High-Performance Organic Light-Emitting Diodes Based on Intramolecular Charge-Transfer Emission from Donor–Acceptor Molecules: Significance of Electron- Donor Strength and Molecular Geometry. Adv. Funct. Mater. 2006, 16, 1057–1066. DOI: 10.1002/adfm.200500722.
  • Xi, C.; Chen, C.; Lin, J.; Hong, X. Pd-Catalyzed One-Pot Multicomponent Coupling Reaction for the Highly Regioselective Synthesis of Polysubstituted Benzenes. Org. Lett. 2005, 7, 347–349. DOI: 10.1021/ol047553p.
  • Wang, X.-S.; Zhang, M.-M.; Li, Q.; Yao, C.-S.; Tu, S.-J. Brain Strain from Motion of Sparse Markers. Stapp. Car. Crash J. 2019, 63, 1–27. DOI: 10.1016/j.tet.2007.03.154.
  • Wang, J.-L.; Liu, D.; Zhang, Z.-J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. Structure-Based Discovery of an Organic Compound That Binds Bcl-2 Protein and Induces Apoptosis of Tumor Cells. Proc. Natl. Acad. Sci. U S A 2000, 97, 7124–7129. DOI: 10.1073/pnas.97.13.7124.
  • Huang, Z. Bcl-2 Family Proteins as Targets for Anticancer Drug Design. Oncogene 2000, 19, 6627–6631. DOI: 10.1038/sj.onc.1204087.
  • Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G.; Surgenor, A. E. Identification of Chemically Diverse Chk1 Inhibitors by Receptor-Based Virtual Screening. Bioorg. Med. Chem. 2006, 14, 4792–4802. DOI: 10.1016/j.bmc.2006.03.021.
  • Aydıner, B.; Yalçın, E.; Korkmaz, V.; Seferoğlu, Z. Efficient One-Pot Three-Component Method for the Synthesis of Highly Fluorescent Coumarin-Containing 3,5-Disubstituted-2,6-Dicyanoaniline Derivatives under Microwave Irradiation. Synth. Commun. 2017, 47, 2174–2188. DOI: 10.1080/00397911.2017.1362438.
  • (a) Rostami, H.; Shiri, L. CoFe 2 O 4 @SiO 2 ‐PA‐CC‐Guanidine Nanoparticles: A Novel, Efficient, and Recyclable Catalyst for the Synthesis of 3,5‐Disubstituted‐2,6‐Dicyanoaniline Derivatives. Appl. Organometal Chem. 2020, 34, e5599. DOI: 10.1002/aoc.5599. (b) He, J.; Li, Z. Synthesis of 3,5‐Diaryl‐2,6‐Dicyanoanilines from Tandem Reactions of Ynones with Malononitrile. ChemistrySelect 2019, 4, 5732–5734. (c) Bhattacharjee, S.; Khan, A. T. One-Pot Three Component Synthesis of 3,5-Disubstituted 2,6-Dicyanoaniline Derivatives Using 4-Dimethylaminopyridine (DMAP) as a Catalyst. Tetrahedron Lett. 2016, 57, 2994–2997. (d) Borate, H. B.; Kudale, A. S.; Agalave, S. G. Synthesis of Substituted 2,6-Dicyanoanilines and Related Compounds. A Review. Org. Prep. Proc. Int. 2012, 44, 467–521.
  • Yalçın, E.; Kutlu, Y. C.; Korkmaz, V.; Şahin, E.; Seferoğlu, Z. 2,6-Dicyanoaniline Based Donor-Acceptor Compounds: The Facile Synthesis of Fluorescent 3,5-Diaryl/Hetaryl-2,6-Dicyanoanilines. ARKIVOC 2015, 2015, 202–218. DOI: 10.3998/ark.5550190.p009.102.
  • Bhattacharjee, S.; Khan, A. T. One-Pot Three Component Synthesis of 3,5-Disubstituted 2,6-Dicyanoaniline Derivatives Using 4-Dimethylaminopyridine (DMAP) as a Catalyst. Tetrahedron Lett. 2016, 57, 2994–2997. DOI: 10.1016/j.tetlet.2016.05.097.
  • Raghukumar, V.; Thirumalai, D.; Ramakrishnan, V.; Karunakara, V.; Ramamurthy, P. Synthesis of Nicotinonitrile Derivatives as a New Class of NLO Materials. Tetrahedron 2003, 59, 3761–3768. DOI: 10.1016/S0040-4020(03)00507-6.
  • Tu, S.; Jiang, B.; Zhang, Y.; Jia, R.; Zhang, J.; Yao, C.; Shi, F. An Efficient and Chemoselective Synthesis of N-Substituted 2-Aminopyridines via a Microwave-Assisted Multicomponent Reaction. Org. Biomol. Chem. 2007, 5, 355–359. DOI: 10.1039/b614747j.
  • Xin, X.; Wang, Y.; Xu, W.; Lin, Y.; Duan, H.; Dong, D. A Facile and Efficient One-Pot Synthesis of Polysubstituted Benzenes in Guanidinium Ionic Liquids. Green Chem. 2010, 12, 893. DOI: 10.1039/b921390b.
  • Misra, M.; Sharma, R.; Kant, R.; Maulik, P.; Tripathi, R. One Pot Protecting Group Free Synthesis of Multifunctional Biphenyl methyl-C-β-d-Glycosides in Aqueous Medium. Tetrahedron 2011, 67, 740–748. DOI: 10.1016/j.tet.2010.11.067.
  • Adib, M.; Mohammadi, B.; Ansari, S.; Bijanzadeh, H. R.; Zhu, L.-G. A Novel Synthesis of 3-Aryl-2,6-Dicyano-5-Methylanilines via Reaction Between Nitrostyrenes and Malononitrile. Synthesis 2010, 2010, 1526–1530. DOI: 10.1055/s-0029-1218717.
  • (a) Keshwal, B. S.; Rajguru, D.; Acharya, A. D. DBU as A Novel and Highly Efficient Catalyst for the Synthesis of 3,5-Disubstituted-2,6-dicyanoanilines Under Conventional and Microwave Conditions. Iran. J. Chem. Chem. Eng. 2016, 35, 37. (b) Jain, S.; Keshwal, B. S.; Rajguru, D. L-Proline Catalyzed Efficient and Clean Synthesis of Polysubstituted Benzenes in the Ionic Liquid [Bmim]PF6. J. Serb. Chem. Soc. 2012, 77, 1345–1352. DOI: 10.2298/JSC111211067J. (c) El-Maghraby, M. A.; Sadek, K. U.; Selim, M. A.; Elnagdi, M. H. Nitriles in Organic Synthesis. The Chemical Behavior of [1-(2-Furyl)-Ethylidene]- and [1-(2-Thienyl)Ethylidene]Malononitriles. BCSJ 1988, 61, 1375–1377.
  • Zhang, L.; Hogan, S.; Li, J.; Sun, S.; Canning, C.; Zheng, S. J.; Zhou, K. Grape Skin Extract Inhibits Mammalian Intestinal α-Glucosidase Activity and Suppresses Postprandial Glycemic Response in Streptozocin-Treated Mice. Food Chem. 2011, 126, 466–471. DOI: 10.1016/j.foodchem.2010.11.016.
  • Bauer, A. W.; Kirby, W. M.; Sherris, J. C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. DOI: 10.1093/ajcp/45.4_ts.493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.