Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 23
139
Views
2
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Barbituric acids in the synthesis of naphthopyranopyrimidines: A brief review

&
Pages 2179-2197 | Received 28 Jul 2022, Published online: 12 Nov 2022

References

  • Kefayati, H.; Golshekan, M.; Shariati, S.; Bagheri, M. Fe3O4@MCM-48–SO3H: An Efficient Magnetically Separable Nanocatalyst for the Synthesis of Benzo[f]Chromeno[2,3-d]Pyrimidinones. Chin. J. Catal. 2015, 36, 572–578. DOI: 10.1016/S1872-2067(14)60286-2.
  • Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Parkes, K. E. B.; Thomas, G. J. WO Patent 9706178Al, 1997.
  • Llama, E. F.; Del Campo, C.; Capo, M.; Anadon, M. Synthèse et activité antinociceptive de dérivés phényl-9-alkoxy-9 ou acyl-oxy-9 de xanthène, thioxanthène et acridine. Eur. J. Med. Chem. 1989, 24, 391–396. DOI: 10.1016/0223-5234(89)90083-4.
  • Paneda, C.; Huitron Resendiz, S.; Frago, L. M.; Chowen, J. A.; Picetti, R.; de Lecea, L.; Roberts, A. J. Neuropeptide S Reinstates Cocaine-Seeking Behavior and Increases Locomotor Activity through Corticotropin-Releasing Factor Receptor 1 in Mice. J. Neurosci. 2009, 29, 4155–4161. DOI: 10.1523/JNEUROSCI.5256-08.2009.
  • Radi, M.; Schenone, S.; Botta, M. Recent Highlights in the Synthesis of Highly Functionalized Pyrimidines. Org. Biomol. Chem. 2009, 7, 2841–2847. DOI: 10.1039/b906445a.
  • Bedair, A. H.; El‐Hady, N. A.; El‐Latif, M. S. A.; Fakery, A. H.; El-Agrody, A. M. 4-Hydroxycoumarin in Heterocyclic Synthesis. Part III. Synthesis of Some New Pyrano[2,3-d]Pyrimidine, 2-Substitute. Farmaco 2000, 55, 708–714. DOI: 10.1016/S0014-827X(00)00097-5.
  • Nawwar, G.; Abdelrazek, F.; Swellam, R. Cinnamoylnitrile-, Pyran-, and Pyranopyrazole-Derivatives Containing the Salicylanilide Moiety with Anticipated Molluscicidal Activity. Arch. Pharm. 1991, 324, 875–877. DOI: 10.1002/ardp.2503241110.
  • Heckler, R.; Jourdan, G. European Patent EP 414386, 1991.
  • Ali, A. T.; Hekal, M. H. Convenient Synthesis and Anti-Proliferative Activity of Some Benzochromenes and Chromenotriazolopyrimidines under Classical Methods and Phase Transfer Catalysis. Synth. Commun. 2019, 49, 3498–3509. DOI: 10.1080/00397911.2019.1675173.
  • Regnier, G.; Canevari, R.; Le, J.; Holstorp, S.; Daussy, J. Triphenylpropylpiperazine Derivatives as New Potent Analgetic Substances. J. Med. Chem. 1972, 15, 295–301. DOI: 10.1021/jm00273a600.
  • Banzatti, C.; Branzoli, U.; Lovisolo, P. P.; Melloni, P.; Salvadori, P. Arzneim. Forsch. 1984, 34, 864.
  • Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Rama Murthy, K.; Reddy, Y. N.; Rajam, M. V. Design, Synthesis, Antimicrobial, Anti-Inflammatory and Analgesic Activity of Novel Isoxazolyl Pyrimido[4,5-b]Quinolines and Isoxazolyl Chromeno[2,3-d]Pyrimidin-4-Ones. Eur. J. Med. Chem. 2012, 55, 273–283. DOI: 10.1016/j.ejmech.2012.07.029.
  • Bruno, O.; Brullo, C.; Schenone, S.; Bondavalli, F.; Ranise, A.; Tognolini, M.; Impicciatore, M.; Ballabeni, V.; Barocelli, E. Synthesis, Antiplatelet and Antithrombotic Activities of New 2-Substituted Benzopyrano[4,3-d]Pyrimidin-4-Cycloamines and 4-Amino/Cycloamino-Benzopyrano[4,3-d]Pyrimidin-5-Ones. Bioorg. Med. Chem. 2006, 14, 121–130. DOI: 10.1016/j.bmc.2005.07.066.
  • Kamdar, N. R.; Haveliwala, D. D.; Mistry, P. T.; Patel, S. K. Synthesis and Evaluation of In Vitro Antitubercular Activity and Antimicrobial Activity of Some Novel 4H-Chromeno[2,3-d]Pyrimidine via 2-Amino-4-Phenyl-4H-Chromene-3-Carbonitriles. Med. Chem. Res. 2011, 20, 854–864. DOI: 10.1007/s00044-010-9399-x.
  • Tanaka, J. C.; da Silva, C. C.; Ferreira, I. C.; Machado, G. M.; Leon, L. L.; de Oliveira, A. J. Antileishmanial Activity of Indole Alkaloids from Aspidosperma ramiflorum. Phytomedicine 2007, 14, 377–380. DOI: 10.1016/j.phymed.2006.09.002.
  • Marugan, J.; Liu, K.; Zheng, W.; Eskay, R.; Southall, N.; Heilig, M.; Inglese, J.; Austin, C. Probe Report. MLPCN-Grant X01-DA026210-01, 2010.
  • Dgachi, Y.; Bautista-Aguilera, O.; Benchekroun, M.; Martin, H.; Bonet, A.; Knez, D.; Godyń, J.; Malawska, B.; Gobec, S.; Chioua, M.; et al. Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer’s Disease. Molecules 2016, 21, 634. DOI: 10.3390/molecules21050634.
  • Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. An Efficient One-Pot Synthesis of Tetrahydrobenzo[a]Xanthene-11-One and Diazabenzo[a]Anthracene-9,11-Dione Derivatives under Solvent Free Condition. Tetrahedron 2009, 65, 7129–7134. DOI: 10.1016/j.tet.2009.06.024.
  • Sun, X. J.; Zhou, J. F.; Zhao, P. S. Molecular Iodine-Catalyzed One-Pot Synthesis of Tetrahydrobenzo[a]Xanthene-11-One and Diazabenzo[a]Anthracene-9,11-Dione Derivatives under Microwave Irradiation. J. Heterocycl. Chem. 2011, 48, 1347–1350. DOI: 10.1002/jhet.742.
  • Kumar, K. P.; Satyanarayana, S.; Reddy, P. L.; Narasimhulu, G.; Ravirala, N.; Subba Reddy, B. V. Tetrahedron Lett. 2012, 53, 1738–1741. DOI: 10.1016/j.tetlet.2012.01.096.
  • Sun, X.-J.; Zhou, J.-F.; Zhao, P.-S. Molecular Iodine–Catalyzed One-Pot Synthesis of Tetrahydrobenzo[a]Xanthene-11-One and Diazabenzo[a]Anthracene-9,11-Dione Derivatives. Synth. Commun. 2012, 42, 1542–1549. DOI: 10.1080/00397911.2010.541966.
  • Khurana, J. M.; Lumb, A.; Chaudhary, A.; Nand, B. Synthesis and In Vitro Evaluation of Antioxidant Activity of Diverse Naphthopyranopyrimidines, Diazaanthra[2,3-d][1,3]Dioxole-7,9-Dione and Tetrahydrobenzo[a]Xanthen-11-Ones. RSC Adv. 2013, 3, 1844–1854. DOI: 10.1039/C2RA22406B.
  • Mujahid Alam, M.; Merajuddin Ahmed, S.; Imtiaz Ansari, A. Int. J. Basic Appl. Chem. Sci. 2014, 4, 24–29.
  • Olyaei, A.; Gahramannejad, F.; Khoeiniha, R. One-Pot Access to New Tetrahydrobenzo[a]Xanthen-11-Ones and Naphthopyranopyrimidines Using 2,3-Dihydroxynaphthalene. Synth. Commun. 2016, 46, 1699–1707. DOI: 10.1080/00397911.2016.1223308.
  • Noori Sadeh, F.; Hazeri, N.; Maghsoodlou, M. T.; Lashkari, M. Efficient Lactic Acid-Catalyzed Route to Naphthopyranopyrimidines under Solvent-Free Conditions. Org. Prep. Proced. Int. 2017, 49, 35–44. DOI: 10.1080/00304948.2017.1260395.
  • Etvand, N. Synthesis 2020, 52, 1707–1718. DOI: 10.1055/s-0037-1610755.
  • Karad, A. R.; Jadhav, A. G.; Wadwale, N. B.; Khansole, G. S.; Choudhare, S. S.; Tiwade, S. S.; Nawhate, S. V.; Bhosale, V. N. IJIRMF 2021, 7, 129–135.
  • Ahanthem, D.; Thiyam, M.; Haobam, R.; Laitonjam, W. S. Indian J. Chem. B 2021, 60, 1243–1257.
  • Wu, L.; Wang, X.; Yang, L.; Yan, F. Asian J. Chem. 2010, 22, 6178–6184.
  • Shaterian, H. R.; Azizi, K.; Fahimi, N. Phosphoric Acid Supported on Alumina (H3PO4/Al2O3) as an Efficient and Reusable Catalyst for the One-Pot Synthesis of Benzoxanthene Pigments. Res. Chem. Intermed. 2014, 40, 1403–1414. DOI: 10.1007/s11164-013-1047-x.
  • Mohaqeq, M.; Safaei-Ghomi, J. A Flexible One-Pot Synthesis of 8,10-Dimethyl-12-Aryl-9H-Naphto[1′,2′:5,6]Pyrano[2,3-d]Pyrimidine-9,11-Diones Catalyzed by ZnO Nanoparticles under Solvent-Free Conditions. Monatsh Chem. 2015, 146, 1581–1586. DOI: 10.1007/s00706-015-1411-1.
  • Mohaqeq, M.; Safaei-Ghomi, J.; Shahbazi-Alavi, H. ZrOCl2/Nano TiO2 as an Efficient Catalyst for the One Pot Synthesis of Naphthopyranopyrimidines under Solvent-Free Conditions. Acta Chim. Slov. 2015, 62, 967–972. DOI: 10.17344/acsi.2015.1567.
  • Chinta, R. R.; Harikrishna, V.; Tulam, V. K.; Mainkar, P. S.; Dubey, P. K. Synthesis and Biological Evaluation of Naphthopyranopyrimidines Derivatives as Potential Antifungal and Antibacterial Activities. Asian J. Chem. 2016, 28, 899–902. DOI: 10.14233/ajchem.2016.19546.
  • Mohaqeq, M.; Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Teymuri, R. ZnAl2O4 Nanoparticles as Efficient and Reusable Heterogeneous Catalyst for the Synthesis of 12-Phenyl-8,12-Dihydro-8,10-Dimethyl-9H-Naphtho[1′,2′:5,6] Pyrano[2,3-d] Pyrimidine-9,11-(10H)-Diones under Microwave Irradiation. Polycycl. Aromat. Compd. 2017, 37, 52–62. DOI: 10.1080/10406638.2015.1088044.
  • Moradi, L.; Mirzaei, M. Immobilization of Lewis Acidic Ionic Liquid on Perlite Nanoparticle Surfaces as a Highly Efficient Solid Acid Catalyst for the Solvent-Free Synthesis of Xanthene Derivatives. RSC Adv. 2019, 9, 19940–19948. DOI: 10.1039/c9ra03312b.
  • Ahmadi, M.; Moradi, L.; Sadeghzadeh, M. Appl. Organometal. Chem. 2019, 33, e4980.
  • Rahmatinejad, S.; Naeimi, H. Crumpled Perovskite-Type LaMoxFe1−xO3 Nanosheets: A Reusable Catalyst for Rapid and Green Synthesis of Naphthopyranopyrimidine Derivatives. Polyhedron 2020, 177, 114318. DOI: 10.1016/j.poly.2019.114318.
  • Samadani, M.; Asadi, B.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Tangestaninejad, S.; Moghadam, M. Triazine Bis(Pyridinium) Hydrogen Sulfate Ionic Liquid Immobillized on Functionalized Halloysite Nanotubes as an Efficient Catalyst for One-Pot Synthesis of Naphthopyranopyrimidines. RSC Adv. 2021, 11, 11976–11983. DOI: 10.1039/d1ra01230d.
  • Ahmadi, M.; Moradi, L.; Sadeghzadeh, M. J. Green Synthesis of Benzochromenopyrimidines in the Presence of MWCNTs@SiO2/MSA as a New and Effective Solid Acid Catalyst under Microwave Irradiation. Mol. Struct. 2021, 1235, 130183. DOI: 10.1016/j.molstruc.2021.130183.
  • Rahmatinejad, S.; Naeimi, H. Graphitic Carbon Nitride Supported Neodymium Oxide as an Efficient Recyclable Nanocatalyst for the One-Pot Synthesis of Diazabenzo[a]Anthraceneones. Dalton Trans. 2022, 51, 1163–1174. DOI: 10.1039/d1dt03695e.
  • Nandi, G. C.; Samai, S.; Singh, M. S. First InCl3-Catalyzed, Three-Component Coupling of Aldehydes, β-Naphthol, and 6-Amino-1,3-Dimethyluracil to Functionalized Naphthopyranopyrimidines. Synlett 2010, 2010, 1133–1137. DOI: 10.1055/s-0029-1219574.
  • Jalde, S. S.; Chavan, H. V.; Adsul, L. K.; Dhakane, V. D.; Bandgar, B. P. An Efficient Solvent-Free Synthesis of Naphthopyranopyrimidines Using Heteropolyacid as an Ecofriendly Catalyst. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2014, 44, 623–626. DOI: 10.1080/15533174.2013.783858.
  • Azimi, S. C. Iran. J. Catal. 2015, 5, 41–48.
  • Sadeh, N.; Lashkari, F.; Hazeri, M.; Maghsoodlou, N. T. M. Org. Chem. Res. 2018, 4, 124–130.
  • Fatahpour, M.; Hazeri, N.; Maghsoodlou, M. T.; Lashkari, M. One-Pot Condensation Approach for Synthesis of Diverse Naphthopyranopyrimidines Utilizing Lactic Acid as Efficient and Eco-Friendly Catalyst. Polycycl. Aromat. Compd. 2019, 39, 311–317. DOI: 10.1080/10406638.2017.1326948.
  • Sajadikhah, S. S. Al(H2PO4)3 as an Efficient and Recyclable Catalyst for the One-Pot Synthesis of Naphthopyranopyrimidines. RSC Adv. 2015, 5, 28038–28043. DOI: 10.1039/C5RA00679A.
  • Ghahremanzadeh, R.; Amanpour, T.; Sayyafi, M.; Bazgir, A. J. Heterocycl. Chem. 2010, 47, 421–424.
  • Yang, X.; Yang, L.; Wu, L. [Hmim][HSO4]: An Efficient and Reusable Catalyst for the Synthesis of Spiro[Dibenzo[a,i]-Xanthene-14,3′-Indoline]-2′,8,13-Triones and Spironaphthopyran[2,3-d]Pyrimidine-5,3′-Indolines. Bull. Korean Chem. Soc. 2012, 33, 714–716. DOI: 10.5012/bkcs.2012.33.2.714.
  • Mohammadi Ziarani, G.; Lashgari, N.; Faramarzi, S.; Badiei, A. Acta Chim. Slov. 2014, 61, 574–579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.