Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 4
149
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of novel heterocyclic compounds bearing tetralin moiety of potential anticancer activity targeting the intrinsic apoptotic pathway

, , , &
Pages 298-315 | Received 29 Nov 2022, Published online: 31 Jan 2023

References

  • World Health Organization Factsheet; 2021. https://www.who.int/news-room/fact-sheets/detail/cancer.
  • Kim, H. C.; Cho, M. C.; Hypertension Epidemiology Research Working Group. The Korean Society Hypertension. Clin. Hypertens. 2018, 24, 13. DOI: 10.1186/s40885-018-0098-0.
  • Bérubé, G. How to Utilize Academic Research Efforts in Cancer Drug Discovery. Expert Opin. Drug Discov. 2019, 14, 331–334. DOI: 10.1080/17460441.2019.1582637.
  • Wang, Z.; Zhao, B.; Liu, Y.; Wan, J. P. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv. Synth. Catal. 2022, 364, 1508–1521. DOI: 10.1002/adsc.202200144.
  • Amaye, I. J.; Haywood, R. D.; Mandzo, E. M.; Wirick, J. J.; Jackson-Ayotunde, P. L. Enaminones as Building Blocks in Drug Development: Recent Advances in Their Chemistry, Synthesis, and Biological Properties. Tetrahedron 2021, 83, 131984. DOI: 10.1016/j.tet.2021.131984.
  • Kamal, A.; Srinivasulu, V.; Nayak, V. L.; Sathish, M.; Shankaraiah, N.; Bagul, C.; Reddy, N. S.; Rangaraj, N.; Nagesh, N. Design and Synthesis of C3-Pyrazole/Chalcone-Linked Beta-Carboline Hybrids: Antitopoisomerase I, DNA-Interactive, and Apoptosis-Inducing Anticancer Agents. Chem. Med. Chem. 2014, 9, 2084–2098. DOI: 10.1002/cmdc.201300406.
  • Bertuzzi, G.; Crotti, S.; Calandro, P.; Bonini, B. F.; Monaco, I.; Locatelli, E.; Fochi, M.; Zani, P.; Strocchi, E.; Mazzanti, A.; et al. Quinone-Fused Pyrazoles through 1,3-Dipolar Cycloadditions: Synthesis of Tricyclic Scaffolds and In Vitro Cytotoxic Activity Evaluation on Glioblastoma Cancer Cells. Chem. Med. Chem. 2018, 13, 1744–1750. DOI: 10.1002/cmdc.201800251.
  • Nafie, M. S.; Amer, A. M.; Mohamed, A. K.; Tantawy, E. S. Discovery of Novel Pyrazolo [3,4-b] Pyridine Scaffold-Based Derivatives as Potential PIM-1 Kinase Inhibitors in Breast Cancer MCF-7 Cells. Bioorg. Med. Chem. 2020, 28, 115828. DOI: 10.1016/j.bmc.2020.115828.
  • Abdellatif, K. R.; Bakr, R. B. Pyrimidine and Fused Pyrimidine Derivatives as Promising Protein Kinase Inhibitors for Cancer Treatment. Med. Chem. Res. 2021, 30, 31–49. DOI: 10.1007/s00044-020-02656-8.
  • Bakr, R. B.; Mehany, A. B. M.; Abdellatif, K. R. A. Synthesis, EGFR Inhibition and anti-Cancer Activity of New 3,6-Dimethyl-1-Phenyl-4-(Substituted-Methoxy)Pyrazolo[3,4-d] Pyrimidine Derivatives. Anticancer Agents Med. Chem. 2017, 17, 1389–1400. DOI: 10.2174/1872211311666170213105004.
  • Kumar, S.; Gupta, S.; Abadi, L. F.; Gaikwad, S.; Desai, D.; Bhutani, K. K.; Kulkarni, S.; Singh, I. P. Synthesis and In-Vitro Anti-HIV-1 Evaluation of Novel Pyrazolo [4,3-c] Pyridin-4-One Derivatives. Eur. J. Med. Chem. 2019, 183, 111714. DOI: 10.1016/j.ejmech.2019.111714.
  • Wang, Y. Y.; Xu, F. Z.; Zhu, Y. Y.; Song, B.; Luo, D.; Yu, G.; Chen, S.; Xue, W.; Wu, J. Pyrazolo [3,4-d] Pyrimidine Derivatives Containing a Schiff Base Moiety as Potential Antiviral Agents. Bioorg. Med. Chem. Lett. 2018, 28, 2979–2984. DOI: 10.1016/j.bmcl.2018.06.049.
  • Hernández-Vázquez, E.; Salgado-Barrera, S.; Ramírez-Espinosa, J. J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis and Molecular Docking of N′-Arylidene-5-(4-Chlorophenyl)-1-(3,4-Dichlorophenyl)-4-Methyl-1H-Pyrazole-3-Carbohydrazides as Novel Hypoglycemic and Antioxidant Dual Agents. Bioorg. Med. Chem. 2016, 24, 2298–2306. DOI: 10.1016/j.bmc.2016.04.007.
  • Abdel-Monem, Y. K.; Abou El-Enein, S. A.; El-Sheikh-Amer, M. M. Design of New Metal Complexes of 2-(3-Amino-4, 6-Dimethyl-1H-Pyrazolo [3,4-b] Pyridin-1-yl) Aceto-Hydrazide: Synthesis, Characterization, Modelling and Antioxidant Activity. J. Mol. Struct. 2017, 1127, 386–396. DOI: 10.1016/j.molstruc.2016.07.110.
  • Kostić, A.; Jovanović Stojanov, S.; Podolski-Renić, A.; Nešović, M.; Dragoj, M.; Nikolić, I.; Tasić, G.; Schenone, S.; Pešić, M.; Dinić, J. Pyrazolo [3,4-d] Pyrimidine Tyrosine Kinase Inhibitors Induce Oxidative Stress in Patient-Derived Glioblastoma Cells. Brain Sci. 2021, 11, 884. DOI: 10.3390/brainsci11070884.
  • Faria, J. V.; Vegi, P. F.; Miguita, A. G. C.; Dos Santos, M. S.; Boechat, N.; Bernardino, A. M. R. Recently Reported Biological Activities of Pyrazole Compounds. Bioorg. Med. Chem. 2017, 25, 5891–5903. DOI: 10.1016/j.bmc.2017.09.035.
  • Taher, A. T.; Sarg, M. T. M.; Ali, N. R. E. S.; Elnagdi, N. H. Design, Synthesis, Modeling Studies and Biological Screening of Novel Pyrazole Derivatives as Potential Analgesic and Anti-Inflammatory Agents. Bioorg. Chem. 2019, 89, 103023. DOI: 10.1016/j.bioorg.2019.103023.
  • Mohamed, L. W.; Shaaban, M. A.; Zaher, A. F.; Alhamaky, S. M.; Elsahar, A. M. Synthesis of New Pyrazoles and Pyrozolo [3,4-b] Pyridines as Anti-Inflammatory Agents by Inhibition of COX-2 Enzyme. Bioorg. Chem. 2019, 83, 47–54. DOI: 10.1016/j.bioorg.2018.10.014.
  • Kaping, S.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. Ultrasound Assisted Synthesis of Pyrazolo [1,5-a] Pyrimidine-Antipyrine Hybrids and Their Anti-Inflammatory and Anti-Cancer Activities. Eur. J. Chem. 2020, 11, 68–79. DOI: 10.5155/eurjchem.11.1.68-79.1942.
  • Bekhit, A. A.; Saudi, M. N.; Hassan, A. M.; Fahmy, S. M.; Ibrahim, T. M.; Ghareeb, D.; El-Seidy, A. M.; Nasralla, S. N.; Bekhit, A. E. D. A. Synthesis, In Silico Experiments and Biological Evaluation of 1,3,4-Trisubstituted Pyrazole Derivatives as Antimalarial Agents. Eur. J. Med. Chem. 2019, 163, 353–366. DOI: 10.1016/j.ejmech.2018.11.067.
  • Eagon, S.; Hammill, J. T.; Sigal, M.; Ahn, K. J.; Tryhorn, J. E.; Koch, G.; Belanger, B.; Chaplan, C. A.; Loop, L.; Kashtanova, A. S.; et al. Synthesis and Structure–Activity Relationship of Dual-Stage Antimalarial Pyrazolo [3,4-b] Pyridines. J. Med. Chem. 2020, 63, 11902–11919. DOI: 10.1021/acs.jmedchem.0c01152.
  • Pogaku, V.; Krishna, V. S.; Sriram, D.; Rangan, K.; Basavoju, S. Ultrasonication-Ionic Liquid Synergy for the Synthesis of New Potent anti-Tuberculosis 1,2,4-Triazol-1-yl-Pyrazole Based Spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett. 2019, 29, 1682–1687. DOI: 10.1016/j.bmcl.2019.04.026.
  • Ahmed, W.; Yan, X.; Hu, D.; Adnan, M.; Tang, R. Y.; Cui, Z. N. Synthesis and Fungicidal Activity of Novel Pyrazole Derivatives Containing 5-Phenyl-2-Furan. Bioorg. Med. Chem. 2019, 27, 115048. DOI: 10.1016/j.bmc.2019.115048.
  • El-Gohary, N. S.; Gabr, M. T.; Shaaban, M. I. Synthesis, Molecular Modeling and Biological Evaluation of New Pyrazolo [3,4-b] Pyridine Analogs as Potential Antimicrobial, Antiquorum-Sensing and Anticancer Agents. Bioorg. Chem. 2019, 89, 102976. DOI: 10.1016/j.bioorg.2019.102976.
  • Abdel-Megid, M. Part—II: Utilities of Active Methylene Compounds and Heterocycles Bearing Active Methyl or Having an Active Methine in the Formation of Bioactive Pyrazoles and Pyrazolopyrimidines. Synth. Commun. 2020, 50, 3563–3591. DOI: 10.1080/00397911.2020.1807570.
  • Greco, C.; Catania, R.; Balacco, D. L.; Taresco, V.; Musumeci, F.; Alexander, C.; Huett, A.; Schenone, S. Synthesis and Antibacterial Evaluation of New Pyrazolo [3,4-d] Pyrimidines Kinase Inhibitors. Molecules 2020, 25, 5354. DOI: 10.3390/molecules25225354.
  • Hassaneen, H. M.; Saleh, F. M.; Abdallah, T. A.; Mohamed, Y. S.; Awad, E. M. Synthesis, Reactions, and Antimicrobial Activity of Some Novel Pyrazolo [3,4-d] Pyrimidine, Pyrazolo [4,3-e][1,2,4] Triazolo [1,5-c] Pyrimidine, and Pyrazolo [4,3-e][1,2,4] Triazolo [3,4-c]. J. Heterocycl. Chem. 2020, 57, 892–912. DOI: 10.1002/jhet.3835.
  • Kulkarni, R.; Kompalli, K.; Gaddam, N.; Mangannavar, C. V.; Darna, B.; Garlapati, A.; Kumar, D.; Machha, B. Synthesis, Characterization, Antitubercular and Anti-Inflammatory Activity of New Pyrazolo [3,4-d] Pyrimidines. Comb. Chem. High Throughput Screen 2021, 24, 1300–1308. DOI: 10.2174/1386207323999200918114905.
  • Xu, Y.; Zhang, Z.; Jiang, X.; Chen, X.; Wang, Z.; Alsulami, H.; Qin, H. L.; Tang, W. Discovery of δ-Sultone-Fused Pyrazoles for Treating Alzheimer’s Disease: Design, Synthesis, Biological Evaluation and SAR Studies. Eur. J. Med. Chem. 2019, 181, 111598. DOI: 10.1016/j.ejmech.2019.111598.
  • Özdemir, A.; Altıntop, M. D.; Kaplancıklı, Z. A.; Can, Ö. D.; Özkay, Ü. D.; Turan-Zitouni, G. Synthesis and Evaluation of New 1,5-Diaryl-3-[4-(Methyl-Sulfonyl) Phenyl]-4, 5-Dihydro-1H-Pyrazole Derivatives as Potential Antidepressant Agents. Molecules 2015, 20, 2668–2684. DOI: 10.3390/molecules20022668.
  • Wang, C.; Yang, S.; Du, J.; Ni, J.; Wu, Y.; Wang, J.; Guan, Q.; Zuo, D.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and Bioevaluation of Diarylpyrazoles as Antiproliferative Agents. Eur. J. Med. Chem. 2019, 171, 1–10. DOI: 10.1016/j.ejmech.2019.02.049.
  • Jian, X. E.; Yang, F.; Jiang, C. S.; You, W. W.; Zhao, P. L. Synthesis and Biological Evaluation of Novel Pyrazolo [3,4-b] Pyridines as Cis-Restricted Combretastatin A-4 Analogues. Bioorg. Med. Chem. Lett. 2020, 30, 127025. DOI: 10.1016/j.bmcl.2020.127025.
  • Ribeiro, J. L.; Soares, J. C.; Portapilla, G. B.; Providello, M. V.; Lima, C. H.; Muri, E. M.; de Albuquerque, S.; Dias, L. R. Trypanocidal activity of New 1,6-Diphenyl-1H-Pyrazolo [3,4-b] Pyridine Derivatives: Synthesis, In Vitro and In Vivo Studies. Bioorg. Med. Chem. 2021, 29, 115855. DOI: 10.1016/j.bmc.2020.115855.
  • Hu, L.; Li, L.; Chang, Q.; Fu, S.; Qin, J.; Chen, Z.; Li, X.; Liu, Q.; Hu, G.; Li, Q. Discovery of Novel Pyrazolo [3,4-b] Pyridine Derivatives with Dual Activities of Vascular Remodeling Inhibition and Vasodilation for the Treatment of Pulmonary Arterial Hypertension. J. Med. Chem. 2020, 63, 11215–11234. DOI: 10.1021/acs.jmedchem.0c01132.
  • Pfaffenrot, B.; Klövekorn, P.; Juchum, M.; Selig, R.; Albrecht, W.; Zender, L.; Laufer, S. A. Design and Synthesis of 1H-Pyrazolo [3,4-b] Pyridines Targeting Mitogen-Activated Protein Kinase Kinase 4 (MKK4)-a Promising Target for Liver Regeneration. Eur. J. Med. Chem. 2021, 218, 113371. DOI: 10.1016/j.ejmech.2021.113371.
  • Chen, C.; Pan, P.; Deng, Z.; Wang, D.; Wu, Q.; Xu, L.; Hou, T.; Cui, S. Discovery of 3,6-Diaryl-1H-Pyrazolo [3,4-b] Pyridines as Potent Anaplastic Lymphoma Kinase (ALK) Inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 912–916. DOI: 10.1016/j.bmcl.2019.01.037.
  • Lourenço, A. L.; Salvador, R. R. S.; Silva, L. A.; Saito, M. S.; Mello, J. F. R.; Cabral, L. M.; Rodrigues, C. R.; Vera, M. A. F.; Muri, E. M. F.; de Souza, A. M. T.; et al. Synthesis and Mechanistic Evaluation of Novel N′-Benzylidene-Carbohydrazide-1H-Pyrazolo [3,4-b] Pyridine Derivatives as Non-anionic Antiplatelet Agents. Eur. J. Med. Chem. 2017, 135, 213–229. DOI: 10.1016/j.ejmech.2017.04.023.
  • Papastathopoulos, A.; Lougiakis, N.; Kostakis, I. K.; Marakos, P.; Pouli, N.; Pratsinis, H.; Kletsas, D. New Bioactive 5-Arylcarboximidamidopyrazolo [3,4-c] Pyridines: Synthesis, Cytotoxic Activity, Mechanistic Investigation and Structure-Activity Relationships. Eur. J. Med. Chem. 2021, 218, 113387. DOI: 10.1016/j.ejmech.2021.113387.
  • Hao, S. Y.; Qi, Z. Y.; Wang, S.; Wang, X. R.; Chen, S. W. Synthesis and Bioevaluation of N-(3,4,5-Trimethoxyphenyl)-1H-Pyrazolo [3,4-b] Pyridin-3-Amines as Tubulin Polymerization Inhibitors with Anti-Angiogenic Effects. Bioorg. Med. Chem. 2021, 31, 115985. DOI: 10.1016/j.bmc.2020.115985.
  • Fouda, A. M.; Abbas, H. A. S.; Ahmed, E. H.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Synthesis, In Vitro Antimicrobial and Cytotoxic Activities of Some New Pyrazolo [1,5-a] Pyrimidine Derivatives. Molecules 2019, 24, 1080–1100. DOI: 10.3390/molecules24061080.
  • Gamal El-Din, M. M.; El-Gamal, M. I.; Abdel-Maksoud, M. S.; Yoo, K. H.; Baek, D.; Choi, J.; Lee, H.; Oh, C. H. Design, Synthesis, and In Vitro Antiproliferative and Kinase Inhibitory Effects of Pyrimidinylpyrazole Derivatives Terminating with Arylsulfonamido or Cyclic Sulfamide Substituents. J. Enzyme Inhib. Med. Chem. 2016, 31, 111–122. DOI: 10.1080/14756366.2016.1190715.
  • Abdellatif, K. R.; Fadaly, W. A.; Elshaier, Y. A.; Ali, W. A.; Kamel, G. M. Non-acidic 1,3,4-Trisubstituted-Pyrazole Derivatives as Lonazolac Analogs with Promising COX-2 Selectivity, anti-Inflammatory Activity and Gastric Safety Profile. Bioorg. Chem. 2018, 77, 568–578. DOI: 10.1016/j.bioorg.2018.02.018.
  • Porcu, A.; Melis, M.; Turecek, R.; Ullrich, C.; Mocci, I.; Bettler, B.; Gessa, G. L.; Castelli, M. P. Rimonabant, a Potent CB1 Cannabinoid Receptor Antagonist, is a Gαi/o Protein Inhibitor. Neuropharmacology 2018, 133, 107–120. DOI: 10.1016/j.neuropharm.2018.01.024.
  • Aggarwal, R.; Kumar, S. 5-Aminopyrazole as Precursor in Design and Synthesis of Fused Pyrazoloazines. Beilstein J. Org. Chem. 2018, 14, 203–242. DOI: 10.3762/bjoc.14.15.
  • Lippa, A.; Czobor, P.; Stark, J.; Beer, B.; Kostakis, E.; Gravielle, M.; Bandyopadhyay, S.; Russek, S. J.; Gibbs, T. T.; Farb, D. H.; Skolnick, P. Selective Anxiolysis Produced by Ocinaplon, a GABAA Receptor Modulator. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7380–7385. DOI: 10.1073/pnas.0502579102.
  • George, C. F. P. Pyrazolopyrimidines. The Lancet 2001, 358, 1623–1626. DOI: 10.1016/S0140-6736(01)06656-9.
  • Wegner, F.; Deuther-Conrad, W.; Scheunemann, M.; Brust, P.; Fischer, S.; Hiller, A.; Diekers, M.; Strecker, K.; Wohlfarth, K.; Allgaier, C.; et al. GABAA Receptor Pharmacology of Fluorinated Derivatives of the Novel Sedative-Hypnotic Pyrazolopyrimidine Indiplon. Eur. J. Pharmacol. 2008, 580, 1–11. DOI: 10.1016/j.ejphar.2007.10.016.
  • Gamal-Eldeen, A. M.; Hamdy, N. A.; Abdel-Aziz, H. A.; El-Hussieny, E. A.; Fakhr, I. M. Induction of Intrinsic Apoptosis Pathway in Colon Cancer HCT-116 Cells by Novel 2-Substituted-5,6,7,8-Tetrahydronaphthalene Derivatives. Eur. J. Med. Chem. 2014, 77, 323–333. DOI: 10.1016/j.ejmech.2014.03.021.
  • Amin, K. M.; El-Zahar, M. I.; Anwar, M. M.; Kamel, M. M.; Mohamed, M. H. Synthesis and Anticancer Activity of Novel Tetralin-6-yl Pyridine and Tetralin-6-yl Pyrimidine Derivatives. Acta Pol. Pharm. 2009, 66, 279–291.
  • Hamza, E. K.; Hamdy, N. A.; Zarie, E. S.; Fakhr, I. M.; Elwahy, A. H.; Awad, H. M. Synthesis and In Vitro Evaluation of Novel Tetralin‐Pyrazolo [3,4-b] Pyridine Hybrids as Potential Anticancer Agents. J. Heterocycl. Chem. 2020, 57, 182–196. DOI: 10.1002/jhet.3764.
  • Hamza, E. K.; Hamdy, N. A.; Zarie, E. S.; Fakhr, I. M. I.; Elwahy, A. H. M.; Awad, H. M. Synthesis and In Vitro Anticancer Evaluation of Novel Pyridine Derivatives Bearing Tetrahydronaphthalene Scaffold. Arkivoc 2020, 2019, 459–480. DOI: 10.24820/ark.5550190.p011.056.
  • Hamdy, N. A.; Anwar, M. M.; Abu-Zied, K. M.; Awad, H. M. Synthesis, Tumor Inhibitory and Antioxidant Activity of New Polyfunctionally 2-Substituted 5,6,7,8-Tetrahydronaphthalene Derivatives Containing Pyridine, Thioxopyridine and Pyrazolopyridine Moieties. Acta Pol. Pharm. Drug Res. 2013, 70, 987–1001.
  • Hamdy, N. A.; Gamal-Eldeen, A. M.; Abdel-Aziz, H. A.; Fakhr, I. M. Modulation of Carcinogen Metabolizing Enzymes by New Fused Heterocycles Pendant to 5,6,7,8-Tetrahydronaphthalene Derivatives. Eur. J. Med. Chem. 2010, 45, 463–470. DOI: 10.1016/j.ejmech.2009.10.027.
  • Lefranc, F.; Nuzzo, G.; Hamdy, N. A.; Fakhr, I.; Moreno Y Banuls, L.; Van Goietsenoven, G.; Villani, G.; Mathieu, V.; van Soest, R.; Kiss, R.; Ciavatta, M. L. In Vitro Pharmacological and Toxicological Effects of Norterpene Peroxides Isolated from the Red Sea Sponge Diacarnus erythraeanus on Normal and Cancer Cells. J. Nat. Prod. 2013, 76, 1541–1547. DOI: 10.1021/np400107t.
  • Shaaban, M. R.; Farghaly, T. A.; Alsaedi, A. M.; Abdulwahab, H. G. Microwaves Assisted Synthesis of Antitumor Agents of Novel Azoles, Azines, and Azoloazines Pendant to Phenyl Sulfone Moiety and Molecular Docking for VEGFR-2 Kinase. J. Mol. Struct. 2022, 1249, 131657. DOI: 10.1016/j.molstruc.2021.131657.
  • Alsaedi, A. M.; Farghaly, T. A.; Shaaban, M. R. Synthesis and Antimicrobial Evaluation of Novel Pyrazolopyrimidines Incorporated with Mono- and Diphenylsulfonyl Groups. Molecules 2019, 24, 4009. DOI: 10.3390/molecules24214009.
  • Hamdy, N. A.; El-Senousy, W. M. Synthesis and Antiviral Evaluation of Some Novel Pyrazoles and Pyrazolo [3,4-d]. Acta Pol. Pharm. 2013, 70, 99–110.
  • Hassan, A. A. E. H. Heterocyclic synthesis via Enaminones: Synthesis and Molecular Docking Studies of Some Novel Heterocyclic Compounds Containing Sulfonamide Moiety. Int. J. Org. Chem. 2014, 4, 68–81. DOI: 10.4236/ijoc.2014.41009.
  • Abdel-Aziz, H. A.; Hamdy, N. A.; Fakhr, I. M.; Farag, A. M. Synthesis of Some Novel Pyrazolo [1,5-a] Pyrimidine, 1,2,4-Triazolo [1,5-a] Pyrimidine, Pyrido [2,3-d] Pyrimidine, Pyrazolo [5,1-c]-1,2,4-Triazine and 1,2,4-Triazolo [5,1-c]-1,2,4-Triazine Derivatives Incorporating a Thiazolo [3,2-a] Benzimidazole Moiety. J. Heterocycl. Chem. 2008, 45, 1033–1037. DOI: 10.1002/jhet.5570450413.
  • Shawali, A. S.; Farghaly, T. A.; Al-Dahshoury, A. R. Synthesis, Reactions and Antitumor Activity of New β-Aminovinyl 3-Pyrazolyl Ketones. Arkivoc 2010, 14, 88–99. DOI: 10.3998/ark.5550190.0010.e08.
  • Abdelrazek, F. M.; Gomha, S. M.; Abdelrahman, A. H.; Metz, P.; Sayed, M. A. A Facile Synthesis and Drug Design of Some New Heterocyclic Compounds Incorporating Pyridine Moiety and Their Antimicrobial Evaluation. LDDD 2017, 14, 752–762. DOI: 10.2174/1570180814666161128120240.
  • Mabkhot, Y. N.; Ahmed Kaal, N.; Alterary, S.; Al-Showiman, S. S.; Barakat, A.; Ghabbour, H. A.; Frey, W. Synthesis, In-Vitro Antibacterial, Antifungal, and Molecular Modeling of Potent Anti-Microbial Agents with a Combined Pyrazole and Thiophene Pharmacophore. Molecules 2015, 20, 8712–8729. DOI: 10.3390/molecules20058712.
  • Zaki, Y. H.; Sayed, A. R.; Elroby, S. A. Regioselectivity of 1,3-Dipolar Cycloadditions and Antimicrobial Activity of Isoxazoline, Pyrrolo [3,4-d] Isoxazole-4,6-Diones, Pyrazolo [3,4-d] Pyridazines and Pyrazolo [1,5-a] Pyrimidines. Chem. Cent. J. 2016, 10, 1–13. DOI: 10.1186/s13065-016-0163-2.
  • El-Apasery, M. A.; Al-Mousawi, S. M.; Mahmoud, H.; Elnagdi, M. H. Novel Routes to Biologically Active Enaminones, Dienoic Acid Amides, Arylazonicotinates and Dihydropyridazines under Microwave Irradiation. IRJPAC 2011, 1, 69–83. DOI: 10.9734/IRJPAC/2011/504.
  • Al-Mousawi, S. M.; Moustafa, M. S.; Abdelkhalik, M. M.; Elnagdi, M. H. Enaminones as Building Blocks in Organic Syntheses: On the Reaction of 3-Dimethylamino-2-Propenones with Malononitrile. Arkivoc 2009, xi, 1–10. DOI: 10.3998/ark.5550190.0010.
  • (a) Nam, N. L.; Grandberg, I. I.; Sorokin, V. I. Condensation of 1-Substituted 5-Aminopyrazoles with β-Dicarbonyl Compounds. Chem. Heterocycl. Comp. 2003, 19, 937–942. DOI: 10.1023/A:1026106707180. (b) Karcı, F.; Demirçalı, A. Synthesis of Disazo Pyrazolo [1,5-a] Pyrimidines. Dyes Pigments 2007, 74, 288–297. Doi: 10.1016/j.dyepig.2006.02.007. (c) Elnagdi, M. H.; Abd Allah, S. O. Reactions with the Arylhydrazones of Some α-Cyanoketones. J. Prakt. Chem. 1973, 315, 1009–1016. Doi: 10.1002/prac.19733150604.
  • Shawali, A. S.; Abdelhamid, A. O. Reaction of Dimethylphenacylsulfonium Bromide with N-Nitrosoacetarylamides and Reactions of the Products with Nucleophiles. BCSJ 1976, 49, 321–324. DOI: 10.1246/bcsj.49.321.
  • Eweiss, N. F.; Osman, A. Synthesis of Heterocycles. Part II. New Routes to Acetylthiadiazolines and Alkylazothiazoles. J. Heterocycl. Chem. 1980, 17, 1713–1717. DOI: 10.1002/jhet.5570170814.
  • Hamdy, N. A.; El-Senousy, W. M.; Fakhr, I. M. Enaminone as Building Blocks in Organic Chemistry: A Novel Route to Polyfunctionally 2‐Substituted 5,6,7,8-Tetrahydronaphthalenes and Their Antiviral Evaluation. J. Heterocycl. Chem. 2013, 50, 337–343. DOI: 10.1002/jhet.1080.
  • Thabrew, M. I.; Hughes, R. D.; McFarlane, I. G. Screening of Hepatoprotective Plant Components Using a HepG2 Cell Cytotoxicity Assay. J. Pharm. Pharmacol. 1997, 49, 1132–1135. DOI: 10.1111/j.2042-7158.1997.tb06055.x.
  • Mounier, M. M.; Shehata, S. H.; Soliman, T. N. Anticancer Activity of Nanoencapsulated Ginger in Whey Proteins against Human Tumor Cell Lines. Egypt Pharmaceut. J. 2020, 19, 87. DOI: 10.4103/epj.epj_30_19.
  • Barbareschi, M.; Caffo, O.; Veronese, S.; Leek, R. D.; Fina, P.; Fox, S.; Bonzanini, M.; Girlando, S.; Morelli, L.; Eccher, C.; et al. Bcl-2 and p53 Expression in Node-Negative Breast Carcinoma: A Study with Long-Term Follow-up. Hum. Pathol. 1996, 27, 1149–1155. DOI: 10.1016/S0046-8177(96)90307-X.
  • Onur, R.; Semerciöz, A.; Orhan, I.; Yekeler, H. The Effects of Melatonin and the Antioxidant Defence System on Apoptosis Regulator Proteins (Bax and Bcl-2) in Experimentally Induced Varicocele. Urol. Res. 2004, 32, 204–208. DOI: 10.1007/s00240-004-0403-0.
  • Liliom, K.; Lehotzky, A.; Molnar, A.; Ovadi, J. Characterization of Tubulin-Alkaloid Interactions by Enzyme-Linked Immunosorbent Assay. Anal. Biochem. 1995, 228, 18–26. DOI: 10.1006/abio.1995.1309.
  • Chakraborty, S. P.; KarMahapatra, S. K.; Sahu, S. K.; Pramanik, P.; Roy, S. Amelioratory Effect of Nanoconjugated Vancomycin on Spleen during VRSA-Induced Oxidative Stress. Pathol. Res. Int. 2011, 2011, 420198. DOI: 10.4061/2011/420198.
  • Burton, K. A. Study of the Conditions and Mechanism of the Diphenylamine Reaction for the Colorimetric Estimation of Deoxyribonucleic Acid. Biochem. J. 1956, 62, 315–323. DOI: 10.1042/bj0620315.
  • Thomas, M. D.; McIntosh, G. G.; Anderson, J. J.; McKenna, D. M.; Parr, A. H.; Johnstone, R.; Lennard, T. W.; Horne, C. H.; Angus, B. A. Novel Quantitative Immunoassay System for p53 Using Antibodies Selected for Optimum Designation of p53 Status. J. Clin. Pathol. 1997, 50, 143–147. DOI: 10.1136/jcp.50.2.143.
  • Denault, J. B.; Salvesen, G. S. Human Caspase-7 Activity and Regulation by Its N-Terminal Peptide. J. Biol. Chem. 2003, 278, 34042–34050. DOI: 10.1074/jbc.M305110200‏.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.