Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 5
291
Views
0
CrossRef citations to date
0
Altmetric
Articles

Glucose as an eco-friendly reducing agent for a one-pot multicomponent synthesis of quinoxalines

, , , &
Pages 414-425 | Received 14 Oct 2022, Published online: 11 Feb 2023

References

  • (a) Khatoon, H.; Abdul Malek, E. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades. Molecules. 2021, 26, 1055. DOI: 10.3390/molecules26041055. (b) Suthar, S. K.; Chundawat, N. S.; Singh, G. P.; Padrón, J. M.; Jhala, Y. K. Quinoxaline: A Comprehension of Current Pharmacological Advancement in Medicinal Chemistry. Eur. J. Med. Chem. Reports. 2022, 5, 100040. DOI: 10.1016/j.ejmcr.2022.100040. (c) Rangisetty, J. B.; Gupta, C. N. V. H. B.; Prasad, A. L.; Srinivas, P.; Sridhar, N.; Parimoo, P.; Veeranjaneyulu, A. Synthesis of New Arylaminoquinoxalines and Their Antimalarial Activity in Mice. J. Pharm. Pharmacol. 2001, 53, 1409–1413. DOI: 10.1211/0022357011777765.
  • (a) Singh, D. P.; Deivedi, S. K.; Hashim, S. R.; Singhal, R. G. Synthesis and Antimicrobial Activity of Some New Quinoxaline Derivatives. Pharmaceuticals. 2010, 3, 2416–2425. DOI: 10.3390/ph3082416. (b) Badran, M. M.; Abouzid, K. A. M.; Hussein, M. H. M. Synthesis of Certain Substituted Quinoxalines as Antimicrobial Agents (Part II). Arch Pharm Res 2003, 26, 107–113. DOI: 10.1007/BF02976653. (c) Zhang, M.; Dai, Z. C.; Qian, S. S.; Liu, J. Y.; Xiao, Y.; Lu, A. M.; Zhu, H. L.; Wang, J. X.; Ye, Y. H. Design, Synthesis, Antifungal, and Antioxidant Activities of (E)-6-((2-Phenylhydrazono)Methyl) Quinoxaline Derivatives. J. Agric. Food. Chem. 2014, 62, 9637–9643. DOI: 10.1021/jf504359p.
  • (a) Waring, M. J.; Ben-Hadda, T.; Kotchevar, A. T.; Ramdani, A.; Touzani, R.; Elkadiri, S.; Hakkou, A.; Bouakka, M.; Ellis, T. 2,3-Bifunctionalized Quinoxalines: Synthesis, DNA Interactions and Evaluation of Anticancer, anti-Tuberculosis and Antifungal Activity. Molecules. 2002, 7, 641–656. DOI: 10.3390/70800641. (b) Coltart, C. E. M.; Lindsey, B.; Ghinai, I.; Johnson, A. M.; Heymann, D. L. The Ebola Outbreak, 2013–2016: Old Lessons for New Epidemics. Phil. Trans. R. Soc. B. 2017, 372, 20160297. DOI: 10.1098/rstb.2016.0297. (c) Perlman, S. Another Decade, Another Coronavirus. N. Engl. J. Med. 2020, 382, 760–762. DOI: 10.1056/NEJMe2001126. (d) Montana, M.; Montero, V.; Khoumeri, O.; Vanelle, P. Quinoxaline Derivatives as Antiviral Agents: A Systematic Review. Molecules. 2020, 25, 2784. DOI: 10.3390/molecules25122784.
  • (a) Primas, N.; Suzanne, P.; Verhaeghe, P.; Hutter, S.; Kieffer, C.; Laget, M.; Cohen, A.; Broggi, J.; Lancelot, J. C.; Lesnard, A.; et al. Synthesis and in Vitro Evaluation of 4-Trichloromethylpyrrolo[1,2-a]Quinoxalines as New Antiplasmodial Agents. Euro. J. Med. Chem. 2014, 83, 26–35. DOI: 10.1016/j.ejmech.2014.06.014. (b) Pereira, M. D. F.; Thiery, V. One-Pot Synthesis of Pyrrolo[1,2-a] Quinoxaline Derivatives via Iron-Promoted Aryl Nitro Reduction and Aerobic Oxidation of Alcohols. Org. Lett. 2012, 14, 4754–4757. DOI: 10.1021/ol302006b. (c) Ahn, J.; Lee, S. B.; Song, I.; Chun, S.; Oh, D. C.; Hong, S. Synthesis of 4‑Aryl Pyrrolo[1,2-α] Quinoxalines via Iron-Catalyzed Oxidative Coupling from an Unactivated Methyl Arene. J. Org. Chem. 2021, 86, 7390–7402. DOI: 10.1021/acs.joc.1c00371. (d) Desplat, V.; Geneste, A.; Begorre, M. A.; Fabre, S. B.; Brajot, S.; Massip, S.; Thiolat, D.; Mossalayi, D.; Jarry, C.; Guillon, J. Synthesis of New Pyrrolo[1,2-a]Quinoxaline Derivatives as Potential Inhibitors of Akt Kinase. J. Enzyme. Inhib. Med. Chem. 2008, 23, 648–658. DOI: 10.1080/14756360802205448. (e) Chemboli, R.; Prasad, K. R. S.; Rao, P. R.; Kumar, A. D. N.; Tej, M. B.; Kapavarapu, R.; Rao, M. V. B.; Pal, M. Sonochemical Synthesis of Indolo[1,2-a]Quinoxaline Derivatives in the Presence of Amberlyst-15: Their Evaluation as Potential Cytotoxic Agents. J. Mol. Struct. 2022, 1250, 131803. DOI: 10.1016/j.molstruc.2021.131803. (f) Xu, H.; Fan, L. L. Synthesis and Antifungal Activities of Novel 5,6-Dihydro-Indolo[1,2-a] Quinoxaline Derivatives. Eur. J. Med. Chem. 2011, 46, 1919–1925. DOI: 10.1016/j.ejmech.2011.02.035.
  • (a) Sharma, S.; Kundu, B. Application of the Modified Pictet − Spengler Cyclization Reaction for the Preparation of an Imidazopyrazine Ring: Synthesis of New Pyrido- and Pyrimido-Imidazopyrazines. J. Comb. Chem. 2009, 11, 720–731. DOI: 10.1021/cc9000345. (b) Jacobsen, E. J.; Stelzer, L. S.; TenBrink, R. E.; Belonga, K. L.; Carter, D. B.; Im, H. K.; Im, W. B.; Sethy, V. H.; Tang, A. H.; VonVoigtlander, P. F.; et al. Piperazine Imidazo[1,5-a]Quinoxaline Ureas as High-Affinity GABAA Ligands of Dual Functionality. J. Med. Chem. 1999, 42, 1123–1144. DOI: 10.1021/jm9801307.
  • (a) Agarwal, P. K.; Sawant, D.; Sharma, S.; Kundu, B. New Route to the Synthesis of the Isocryptolepine Alkaloid and Its Related Skeletons Using a Modified Pictet-Spengler Reaction. Eur. J. Org. Chem. 2009, 2009, 292–303. DOI: 10.1002/ejoc.200800929. (b) Lv, W.; Budke, B.; Pawlowski, M.; Connell, P. P.; Kozikowski, A. P. Development of Small Molecules That Specifically Inhibit the D-Loop Activity of RAD51. J. Med. Chem. 2016, 59, 4511–4525. DOI: 10.1021/acs.jmedchem.5b01762. (c) Budke, B.; Tueckmantel, W.; Miles, K.; Kozikowski, A. P.; Connell, P. P. Optimization of Drug Candidates That Inhibit the D-Loop Activity of RAD51. ChemMedChem. 2019, 14, 1031–1040. DOI: 10.1002/cmdc.201900075. (d) Patinote, C.; Karroum, N. B.; Moarbess, G.; Deleuze-Masquefa, C.; Hadj-Kaddour, K.; [Cuq, P.; Diab-Assaf, M.; Kassab, I.; Bonnet, P.; Imidazo, A. 2-a]Pyrazine, Imidazo[1,5-a]Quinoxaline and Pyrazolo[1,5-a]Quinoxaline Derivatives as IKK1 and IKK2 Inhibitors. Euro. J. Med. Chem. 2017, 138, 909–919. DOI: 10.1016/j.ejmech.2017.07.021. (e) Li, S.; Xie, C.; Chu, X.; Dai, Z.; Feng, L.; Ma, C. KI-Mediated One-Pot Transition-Metal-Rree Synthesis of 4-Phenylpyrrolo[1,2-a]Quinoxalines. Eur. J. Org. Chem. 2020, 2020, 4950–4956. DOI: 10.1002/ejoc.202000791.
  • (a) Xie, C.; Feng, L.; Li, W.; Ma, X.; Ma, X.; Liu, Y.; Ma, C. Efficient Synthesis of Pyrrolo[1,2-a]Quinoxalines Catalyzed by Bronsted Acid through Cleavage of C-C Bond. Org. Biomol. Chem. 2016, 14, 8529–8535. DOI: 10.1039/C6OB01401A. (b) Verma, A. K.; Jha, R. R.; Sankar, V. K.; Aggarwal, T.; Singh, R. P.; Chandra, R. Lewis Acid-Catalyzed Selective Synthesis of Diversely Substituted Indolo-and Pyrrolo [1, 2-a] Quinoxalines and Quinoxalinones by Modified Pictet-Spengler Reaction. Eur. J. Org. Chem. 2011, 2011, 6998–7010. DOI: 10.1002/ejoc.201101013. (c) Xie, C.; Zhang, Z.; Li, D.; Gong, J.; Han, X.; Liu, X.; Ma, C. Dimethyl Sulfoxide Involved One-​Pot Synthesis of Quinoxaline Derivatives. J. Org. Chem. 2017, 82, 3491–3499. DOI: 10.1021/acs.joc.6b02977. (d) Wang, X.; Jin, Y.; Zhao, Y.; Zhu, L.; Fu, H. Copper-Catalyzed Aerobic Oxidative Intramolecular C–H Amination Leading to Imidazobenzimidazole Derivatives. Org. Lett. 2012, 14, 452–455. DOI: 10.1021/ol202884z. (e) Wang, C.; Li, Y.; Guo, R.; Tian, J.; Tao, C.; Cheng, B.; Wang, H.; Zhang, J.; Zhai, H. Iodine-Catalyzed Facile Synthesis of Pyrrolo- and Indolo[1,2-a]Quinoxalines. Asian J. Org. Chem. 2015, 4, 866–869. DOI: 10.1002/ajoc.201500174.
  • (a) Verma, A. K.; Jha, R. R.; Sankar, V. K.; Singh, R. P. Selective Synthesis of 4,5-Dihydroimidazo- and Imidazo[1,5-a]Quinoxalines via Modified Pictet–Spengler Reaction. Tetrahedron. Lett. 2013, 54, 5984–5990. DOI: 10.1016/j.tetlet.2013.08.052. (b) Tuong, A. T.; Chuc, T. N.; My, H. P. T.; Thai, Q. H.; Tung, T. N.; Nhan, T. H. L.; Anh, D. N.; Phong, D. T.; Nam, T. P. A New Pathway to Pyrrolo[1,2-a]Quinoxalines via Solvent-Free One-Pot Strategy Utilizing FeMoSe Nanosheets as Efficient Recyclable Synergistic Catalyst. J. Catal. 2019, 377, 163–173. DOI: 10.1016/j.jcat.2019.07.008. (c) Sharma, A.; Singh, M.; Rai, N. N.; Sawant, D. Mild and Efficient Cyanuric Chloride Catalyzed Pictet–Spengler Reaction. Beilstein. J. Org. Chem. 2013, 9, 1235–1242. DOI: 10.3762/bjoc.9.140. (d) Guangbin, J.; Shoucai, W.; Jun, Z.; Jianwen, Y.; Ziang, Z.; Fanghua, J. Palladium-Catalyzed Primary Amine-Directed Decarboxylative Annulation of α-Oxocarboxylic Acids: Access to Indolo[1,2-a]Quinazolines. Adv. Synth. Catal. 2019, 361, 1798–1802. DOI: 10.1002/adsc.201900001.
  • (a) Tang, X.-Y.; Gong, Y.; Huo, H.-R. Metal-Free Synthesis of Pyrrolo[1,2-a]Quinoxalines Mediated by TEMPO Oxoammonium Salts. Synthesis. 2018, 50, 2727–2740. DOI: 10.1055/s-0037-1610131. (b) Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J.-M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; et al. Synthesis, Antimalarial Activity and Molecular Modeling of New Pyrrolo[1,2-a]Quinoxalines, Bispyrrolo[1,2-a]Quinoxalines, Bispyrido[3,2-e]Pyrrolo[1,2-a]Pyrazines and Bispyrrolo[1,2-a]Thieno[3,2-e]Pyrazines. J. Med. Chem. 2004, 47, 1997–2009. DOI: 10.1021/jm0310840. (c) Gao, Z.; Wang, F.; Qian, J.; Yang, H.; Xia, C.; Zhang, J.; Jiang, G. Enantioselective Construction of Quinoxaline-Based Heterobiaryls and P, N-Ligands via Chirality Transfer Strategy. Org. Lett. 2021, 23, 1181–1187. DOI: 10.1021/acs.orglett.0c03827.
  • (a) Trujillo, S. A.; Pena-Solórzano, D.; Bejarano, O. R.; Ochoa-Puentes, C. Tin(II) Chloride Dihydrate/Choline Chloride Deep Eutectic Solvent: redox Properties in the Fast Synthesis of N-Arylacetamides and Indolo(Pyrrolo)[1,2-a]Quinoxalines. RSC Adv. 2020, 10, 40552–40561. DOI: 10.1039/D0RA06871C. (b) Rodríguez-Huerto, P. A.; Peña-Solórzano, D.; Ochoa-Puentes, C. Nitroarenes as Versatile Building Blocks for the Synthesis of Unsymmetrical Urea Derivatives and N-Arylmethyl-2-Substituted Benzimidazoles. Chem. Pap. 2021, 75, 6275–6283. DOI: 10.1007/s11696-021-01785-7.
  • (a) Hernandez-Ruiz, R.; Rubio-Presa, R.; Suarez-Pantiga, S.; Pedrosa, M. R.; Fernandez-Rodriguez, M. A.; Tapia, M. J.; Sanz, R. Mo–Catalyzed One-Pot Synthesis of N-Polyheterocycles from Nitroarenes and Glycols with Recycling of the Waste Reduction Byproduct. substituent-Tuned Photophysical Properties. Chem. Eur. J. 2021, 27, 13613–13623. DOI: 10.1002/chem.202102000. (b) Rubio-Presa, R.; Pedrosa, M. R.; Fernandez-Rodriguez, M. A.; Arnaiz, F. J.; Sanz, R. Molybdenum-Catalyzed Synthesis of Nitrogenated Polyheterocycles from Nitroarenes and Glycols with Reuse of Waste Reduction Byproduct. Org. Lett. 2017, 19, 5470–5473. DOI: 10.1021/acs.orglett.7b02792. (c) Chun, S.; Ahn, J.; Putta, R. R.; Lee, S. B.; Oh, D. C.; Hong, S. Direct Synthesis of Pyrrolo[1,2-α]Quinoxalines via Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)Pyrroles and Alcohols. J. Org. Chem. 2020, 85, 15314–15324. DOI: 10.1021/acs.joc.0c02145.
  • (a) Monopoli, A.; Calo, V.; Ciminale, F.; Cotugno, P.; Angelici, C.; Cioffi, N.; Nacci, A. Glucose as a Clean and Renewable Reductant in the Pd-Nanoparticle-Catalyzed Reductive Homocoupling of Bromo- and Chloroarenes in Water. J. Org. Chem. 2010, 75, 3908–3911. DOI: 10.1021/jo1005729. (b) Kumar, M.; Sharma, U.; Sharma, S.; Kumar, V.; Singh, B.; Kumar, N. Catalyst-Free Water Mediated Reduction of Nitroarenes Using Glucose as a Hydrogen Source. RSC Adv. 2013, 3, 4894–4898. DOI: 10.1039/c3ra40771c. (c) Bollenbach, M.; Wagner, P.; Aquino, P. G. V.; Bourguignon, J. J.; Bihel, F.; Salom, C.; Schmitt, M. D-Glucose: An Efficient Reducing Agent for a Copper(II)-Mediated Arylation of Primary Amines in Water. ChemSusChem. 2016, 9, 3244–3249. DOI: 10.1002/cssc.201600801. (d) Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent Developments in the Reduction of Aromatic and Aliphatic Nitro Compounds to Amines. Org. Process Res. Dev. 2018, 22, 430–445. DOI: 10.1021/acs.oprd.6b00205. (e) Chandna, N.; Kaur, F.; Kumar, S.; Jain, N. Glucose Promoted Facile Reduction of Azides to Amines under Aqueous Alkaline Conditions. Green. Chem. 2017, 19, 4268–4271. DOI: 10.1039/C7GC01593C. (f) Santos, T. D.; Grundke, C.; Lucas, T.; Großmann, L.; Clososki, G. C.; Opatz, T. Glucose as an Eco-Friendly Reductant in a One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. Eur. J. Org. Chem. 2020, 2020, 6429–6432. DOI: 10.1002/ejoc.202000970.
  • (a) Krishna, T.; Narendar Reddy, T.; Laxminarayana, E.; Dipak, K. Copper-Catalyzed One-Pot Synthesis of Pyrrolo[1,2-a]Quinoxaline Derivatives from 1-(2-Aminophenyl)-Pyrroles and Aldehydes. ChemistrySelect. 2019, 4, 250–253. DOI: 10.1002/slct.201803538. (b) Ramamohan, M.; Sridhar, R.; Raghavendra Rao, K.; Naidu, P.; Chandrasekhar, K. B.; Jayaprakash, S. Simple and Highly Efficient Synthesis of Indolo- and Pyrrolo[1,2-a]Quinoxalines Promoted by Molecular Iodine. Synlett. 2015, 26, 1096–1100. DOI: 10.1055/s-0034-1380347. (c) Murthy, V. N.; Nikumbh, S. P.; Tadiparthi, K.; Madhubabu, M. V.; Jammula, S. R.; Rao, L. V.; Raghunadh, A. Amberlite-15 Promoted an Unprecedented Aza Michael Rearrangement for One Pot Synthesis of Dihydroquinazolinone Compounds. RSC Adv. 2018, 8, 22331–22334. DOI: 10.1039/C8RA03308K. (d) Jaganmohan, C.; K. P, V. K.; G, S. R.; Mohanty, S.; Kumar, J.; B, V. R.; Tadiparthi, K.; Raghunadh, A. De Novo Synthesis of 2,2-Bis(Dimethylamino)-3-Alkyl or Benzyl 2,3-Dihydroquinazolin-4(1H)-One Compounds. Syn. Comm. 2018, 48, 168–174. DOI: 10.1080/00397911.2017.1391291. (e) Kumar, S. P.; Murthy, V. N.; Ganesh, K. R.; Rao, G. S.; Krishnaji, T.; Raghunath, A. A New Facile Iodine-Promoted One-Pot Synthesis of Dihydroquinazolinone Compounds. ChemistrySelect. 2018, 24, 6836. DOI: 10.1002/slct.201800695.
  • (a) Raghunath, A.; Krishnaji, T.; Suresh Babu, M.; Narayana Murthy, V.; Vaikunta Rao, L.; Syam Kumar, U. K. Synthesis of Quinoxalin-2(1H)-Ones and Hexahydroquinoxalin-2(1H)-Ones via Oxidative Amidation–Heterocycloannulation. SynOpen. 2020, 4, 54. DOI: 10.1134/S1070428020080199. (b) Venkateshwarlu, R.; Murthy, V. N.; Tadiparthi, K.; Nikumbh, S. P.; Jinkala, R.; Siddaiah, V.; Madhu Babu, M. V.; Rama Mohan, H.; Raghunadh, A. Base Mediated Spirocyclization of Quinazoline: One-Step Synthesis of Spiro-Isoindolinone Dihydroquinazolinones. RSC Adv. 2020, 10, 9486–9491. DOI: 10.1039/C9RA09567E. (c) Jaganmohan, C.; Vinay Kumar, K. P; Venkateshwarlu, R.; Mohanty, S.; Kumar, J.; Venkateswara Rao, B.; Raghunadh, A.; Tadiparthi, K. A Novel Approach for the Synthesis of Functionalized Hydroxylamino Derivative of Dihydroquinazolinones. Syn. Commun. 2020, 50, 2163–2170. DOI: 10.1080/00397911.2020.1768406. (d) Simhachalam, G.; Vaikunta Rao, L.; Chiranjeevi, Y.; Dhanunjaya Rao, A. V.; Ramamohan, M.; Krishnaji, T.; Raghunadh, A. A Simple and Efficient Synthesis of Imidazoquinoxalines and Spiroquinoxalinones via Pictet-Spengler Reaction Using Wang Resin. Syn. Commun. 2022, 52, 218–228. DOI: 10.1080/00397911.2021.2015783.
  • Ellis, M. V.; Wilson, M. A. Carbon Exchange in Hot Alkaline Degradation of Glucose. J. Org. Chem. 2002, 67, 8469–8474. DOI: 10.1021/jo025912t.
  • Allan, P. N. M.; Ostrowska, M. I.; Patel, B. Acetic Acid Catalysed One-Pot Synthesis of Pyrrolo[1,2-a]Quinoxaline Derivatives. Synlett. 2019, 30, 2148–2152. DOI: 10.1055/s-0039-1690724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.