Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 9
203
Views
2
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Acetamidine in heterocycle synthesis

, &
Pages 577-614 | Received 06 Jan 2023, Published online: 20 Mar 2023

References

  • (a) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Metal and Organo-Complex Promoted Synthesis of Fused Five-Membered O-Heterocycles. Synth. Commun. 2020, 50, 457–505. DOI: 10.1080/00397911.2019.1700522. (b) Kaur, N. Metal Catalysts: Applications in Higher Membered N-Heterocycles Synthesis. J. Iran. Chem. Soc. 2015, 12, 9–45. DOI: 10.1007/s13738-014-0451-5. (c) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of S-Heterocycles. Catal. Rev 2015, 57, 478–564. DOI: 10.1080/01614940.2015.1082824. (d) Kaur, N. Copper Catalysts in the Synthesis of Five-Membered N-Polyheterocycles. Curr. Org. Synth. 2018, 15, 940–971. DOI: 10.2174/1570179415666180815144442. (e) Kaur, N. Recent Developments in the Synthesis of Nitrogen Containing Five-Membered Polyheterocycles Using Rhodium Catalysts. Synth. Commun. 2018, 48, 2457–2474. DOI: 10.1080/00397911.2018.1487070. (f) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of Titanium Catalysts for the Syntheses of Heterocycles. Synth. Commun. 2019, 49, 1847–1894. DOI: 10.1080/00397911.2019.1606922.
  • (a) Kaur, N. Ionic Liquid: An Efficient and Recyclable Medium for the Synthesis of Fused Six-Membered Oxygen Heterocycles. Synth. Commun. 2019, 49, 1679–1707. DOI: 10.1080/00397911.2019.1568149. (b) Kaur, N. Multiple Nitrogen-Containing Heterocycles: Metal and Non-Metal Assisted Synthesis. Synth. Commun. 2019, 49, 1633–1658. DOI: 10.1080/00397911.2018.1542497. (c) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-Catalyzed Synthesis of Five-Membered Heterocycles. Synth. Commun. 2019, 49, 1543–1577. DOI: 10.1080/00397911.2019.1594306. (d) Kaur, N. Gold and Silver Assisted Synthesis of Five-Membered Oxygen and Nitrogen Containing Heterocycles. Synth. Commun. 2019, 49, 1459–1485. DOI: 10.1080/00397911.2019.1575423. (e) Kaur, N. Synthesis of Six- and Seven-Membered and Larger Heterocycles Using Au and Ag Catalysts. Inorg. Nano Met. Chem. 2018, 48, 541–568. DOI: 10.1080/24701556.2019.1567544. (f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical Reactions in Five and Six-Membered Polyheterocycles Synthesis. Synth. Commun. 2019, 49, 2281–2318. DOI: 10.1080/00397911.2019.1622732. (g) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Crown Ethers for the Synthesis of Heterocycles. Curr. Org. Chem. 2021, 25, 1270–1297. DOI: 10.2174/1385272825666210521121820. (h) Kaur, N.; Bhardwaj, P.; Gupta, M. Recent Developments in the Synthesis of Five- and Six-Membered N-Heterocycles from Dicarbonyl Compounds. Curr. Org. Chem. 2021, 25, 2765–2790. DOI: 10.2174/1385272825666210812102416. (i) Kaur, N.; Verma, Y.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Copper-Assisted Synthesis of Five-Membered O-Heterocycles. Inorg. Nano Met. Chem. 2020, 50, 705–740. DOI: 10.1080/24701556.2020.1724144.
  • (a) Kaur, N.; Kishore, D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. Synth. Commun. 2014, 44, 1375–1413. DOI: 10.1080/00397911.2013.772202. (b) Kaur, N. Methods for Metal and Non-Metal Catalyzed Synthesis of Six-Membered Oxygen Containing Poly-Heterocycles. Curr. Org. Synth. 2017, 14, 531–556. DOI: 10.2174/1570179413666161021104941. (c) Kaur, N. Photochemical Reactions: synthesis of Six-Membered N-Heterocycles. Curr. Org. Synth. 2017, 14, 972–998. (d) Kaur, N. Ionic Liquids: promising but Challenging Solvents for the Synthesis of N-Heterocycles. Mini Rev. Org. Chem. 2017, 14, 3–23. DOI: 10.2174/1570193X13666161019120050. (e) Kaur, N. Metal Catalysts for the Formation of Six-Membered N-Polyheterocycles. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2016, 46, 983–1020. DOI: 10.1080/15533174.2014.989620. (f) Kaur, N. Applications of Gold Catalysts for the Synthesis of Five-Membered O-Heterocycles. Inorg. Nano Met. Chem. 2017, 47, 163–187. DOI: 10.1080/15533174.2015.1068809. (g) Kaur, N. Photochemical Irradiation: seven and Higher Membered O-Heterocycles. Synth. Commun. 2018, 48, 2935–2964. DOI: 10.1080/00397911.2018.1514051. (h) Kaur, N.; Grewal, P.; Poonia, K. Dicarbonyl Compounds in O-Heterocycle Synthesis. Synth. Commun. 2021, 51, 2423–2444. DOI: 10.1080/00397911.2021.1941114.
  • (a) Kaur, N. Ruthenium Catalysis in Six-Membered O-Heterocycles Synthesis. Synth. Commun. 2018, 48, 1551–1587. DOI: 10.1080/00397911.2018.1457698. (b) Kaur, N. Green Synthesis of Three to Five-Membered O-Heterocycles Using Ionic Liquids. Synth. Commun. 2018, 48, 1588–1613. DOI: 10.1080/00397911.2018.1458243. (c) Kaur, N. Ultrasound-Assisted Green Synthesis of Five-Membered O- and S-Heterocycles. Synth. Commun. 2018, 48, 1715–1738. DOI: 10.1080/00397911.2018.1460671. (d) Kaur, N. Photochemical Mediated Reactions in Five-Membered O-Heterocycles Synthesis. Synth. Commun. 2018, 48, 2119–2149. DOI: 10.1080/00397911.2018.1485165. (e) Kaur, N. Mercury-Catalyzed Synthesis of Heterocycles. Synth. Commun. 2018, 48, 2715–2749. DOI: 10.1080/00397911.2018.1497657. (f) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of Five-Membered O-Heterocycles. Inorg. Chem. Commun. 2014, 49, 86–119. DOI: 10.1016/j.inoche.2014.09.024. (g) Kaur, N.; Kishore, D. Nitrogen-Containing Six-Membered Heterocycles: solid-Phase Synthesis. Synth. Commun. 2014, 44, 1173–1211. DOI: 10.1080/00397911.2012.760129. (h) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N. K. Ag-Mediated Synthesis of Six-Membered N-Heterocycles. Synth. Commun. 2020, 50, 753–795. DOI: 10.1080/00397911.2019.1703196.
  • (a) Kaur, N.; Kishore, D. Solid-Phase Synthetic Approach toward the Synthesis of Oxygen Containing Heterocycles. Synth. Commun. 2014, 44, 1019–1042. DOI: 10.1080/00397911.2012.760131. (b) Kaur, N. Synthesis of Six and Seven-Membered Heterocycles under Ultrasound Irradiation. Synth. Commun. 2018, 48, 1235–1258. DOI: 10.1080/00397911.2018.1434894. (c) Kaur, N. Photochemical Reactions as Key Steps in Five-Membered N-Heterocycles Synthesis. Synth. Commun. 2018, 48, 1259–1284. DOI: 10.1080/00397911.2018.1443218. (d) Kaur, N. Solid-Phase Synthesis of Sulfur Containing Heterocycles. J. Sulfur Chem. 2018, 39, 544–577. DOI: 10.1080/17415993.2018.1457673. (e) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six-Membered S-Heterocycles. Synth. Commun. 2014, 44, 2615–2644. DOI: 10.1080/00397911.2013.792354. (f) Kaur, N. Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds: applications of Microwaves. Synth. Commun. 2015, 45, 1711–1742. DOI: 10.1080/00397911.2013.828756. (g) Kaur, N. Role of Microwaves in the Synthesis of Fused Five Membered Heterocycles with Three N-Heteroatoms. Synth. Commun. 2015, 45, 403–431. DOI: 10.1080/00397911.2013.824981.
  • (a) Kaur, N. Gold Catalysts in the Synthesis of Five-Membered N-Heterocycles. Curr. Organocatal. 2017, 4, 122–154. (b) Kaur, N. Applications of Palladium Dibenzylideneacetone as Catalyst in the Synthesis of Five-Membered N-Heterocycles. Synth. Commun. 2019, 49, 1205–1230. DOI: 10.1080/00397911.2018.1540048. (c) Kaur, N. Copper Catalyzed Synthesis of Seven and Higher-Membered Heterocycles. Synth. Commun. 2019, 49, 879–916. DOI: 10.1080/00397911.2018.1543780. (d) Kaur, N. Ionic Liquid Assisted Synthesis of S-Heterocycles. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 165–185. DOI: 10.1080/10426507.2018.1539492. (e) Kaur, N. Nickel Catalysis: six Membered Heterocycle Syntheses. Synth. Commun. 2019, 49, 1103–1133. DOI: 10.1080/00397911.2019.1568499. (f) Kaur, N. Seven-Membered N-Heterocycles: Metal and Non-Metal Assisted Synthesis. Synth. Commun 2019, 49, 987–1030. DOI: 10.1080/00397911.2019.1574351. (g) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P. A Review of Ruthenium Catalyzed C–N Bond Formation Reactions for the Synthesis of Five-Membered N-Heterocycles. Curr. Org. Chem. 2019, 23, 1901–1944. DOI: 10.2174/1385272823666191021104118. (h) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Gold-Catalyzed C–O Bond Forming Reactions for the Synthesis of Six-Membered O-Heterocycles. SN Appl. Sci 2019, 1, 1–37. (i) Kaur, N. Ionic Liquid Assisted Synthesis of Six-Membered Oxygen Heterocycles. SN Appl. Sci 2019, 1, 1–20.
  • (a) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of Five-Membered O,N-Heterocycles Using Metal and Non-Metal. Synth. Commun. 2019, 49, 1345–1384. DOI: 10.1080/00397911.2019.1594308. (b) Kaur, N. Synthetic Routes to Seven and Higher Membered S-Heterocycles by Use of Metal and Nonmetal Catalyzed Reactions. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 186–209. DOI: 10.1080/10426507.2018.1539493. (c) Kaur, N. Synthesis of Six-Membered N-Heterocycles Using Ruthenium Catalysts. Catal. Lett. 2019, 14, 1513–1539. (d) Kaur, N. Microwave-Assisted Synthesis of Fused Polycyclic Six Membered N-Heterocycles. Synth. Commun. 2015, 45, 273–299. DOI: 10.1080/00397911.2013.816735. (e) Kaur, N. Review of Microwave-Assisted Synthesis of Benzo Fused Six-Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 300–330. DOI: 10.1080/00397911.2013.816736. (f) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered N-Heterocycles. Synth. Commun 2014, 44, 2577–2614. DOI: 10.1080/00397911.2013.783922. (g) Kaur, N. Applications of Microwaves in the Synthesis of Polycyclic Six Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 1599–1631. DOI: 10.1080/00397911.2013.828755.
  • (a) Kaur, N. Palladium Catalysts: synthesis of Five-Membered N-Heterocycles Fused with Other Heterocycles. Catal. Rev. 2015, 57, 1–78. DOI: 10.1080/01614940.2014.976118. (b) Kaur, N. Ultrasound Assisted Synthesis of Six-Membered N-Heterocycles. Mini Rev. Org. Chem. 2018, 15, 520–536. DOI: 10.2174/1570193x15666180221152535. (c) Kaur, N. Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom under Ultrasonic Irradiation. Mini Rev. Org. Chem 2019, 16, 481–503. DOI: 10.2174/1570193X15666180709144028. (d) Kaur, N. Ionic Liquid Promoted Eco-Friendly and Efficient Synthesis of Six-Membered N-Polyheterocycles. Curr. Org. Synth 2018, 15, 1124–1146. DOI: 10.2174/1570179415666180903102542. (e) Kaur, N. Metal and Non-Metal Catalysts in the Synthesis of Five-Membered S-Heterocycles. Curr Org Synth 2019, 16, 258–275. DOI: 10.2174/1570179416666181207144430. (f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic Liquids in the Synthesis of Five-Membered N,N-, N,N,N- and N,N,N,N-Heterocycles. Curr. Org. Chem. 2019, 23, 1214–1238. DOI: 10.2174/1385272823666190717101741. (g) Kaur, N. Synthesis of Seven and Higher-Membered Heterocycles Using Ruthenium Catalysts. Synth. Commun. 2019, 49, 617–661. DOI: 10.1080/00397911.2018.1555711.
  • (a) Kaur, N. Palladium Acetate and Phosphine Assisted Synthesis of Five-Membered N-Heterocycles. Synth. Commun. 2019, 49, 483–514. (b) Kaur, N. Application of Silver-Promoted Reactions in the Synthesis of Five-Membered O-Heterocycles. Synth. Commun. 2019, 49, 743–789. (c) Kaur, N. Environmentally Benign Synthesis of Five Membered 1,3-N,N-Heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 909–943. (d) Kaur, N. Advances in Microwave-Assisted Synthesis for Five Membered N-Heterocycles Synthesis. Synth. Commun. 2015, 45, 432–457. (e) Kaur, N. Microwave-Assisted Synthesis of Five Membered S-Heterocycles. J. Iran. Chem. Soc 2014, 11, 523–564. (f) Kaur, N. Review on the Synthesis of Six Membered N,N-Heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 1145–1182. DOI: 10.1080/00397911.2018.1536213.
  • (a) Kaur, N. Microwave-Assisted Synthesis: Fused Five Membered N-Heterocycles. Synth. Commun. 2015, 45, 789–823. DOI: 10.1080/00397911.2013.824984. (b) Kaur, N. Six Membered Heterocycles with Three and Four N-Heteroatoms: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 151–172. DOI: 10.1080/00397911.2013.813550. (c) Kaur, N. Application of Microwave-Assisted Synthesis in the Synthesis of Fused Six-Membered Heterocycles with N-Heteroatom. Synth. Commun. 2015, 45, 173–201. DOI: 10.1080/00397911.2013.816734. (d) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N. K. Synthesis of Five-Membered N-Heterocycles Using Rh Based Metal Catalysts. Synth. Commun. 2020, 50, 137–160. DOI: 10.1080/00397911.2019.1689271. (e) Kaur, N. Synthesis of Three-Membered and Four-Membered Heterocycles with the Assistance of Photochemical Reactions. J. Heterocycl. Chem. 2019, 56, 1141–1167. DOI: 10.1002/jhet.3491. (f) Kaur, N.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Verma, Y. Organo or Metal Complex Catalyzed Synthesis of Five-Membered Oxygen Heterocycles. Curr. Org. Chem. 2019, 23, 2822–2847. (g) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Ahlawat, N.; Verma, Y. Synthesis of Five-Membered N-Heterocycles Using Silver Metal. Synth. Commun. 2020, 49, 3058–3100. (h) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N. K. Palladium Acetate Assisted Synthesis of Five-Membered N-Polyheterocycles. Synth. Commun. 2020, 50, 1567–1621. DOI: 10.1080/00397911.2020.1723640.
  • (a) Hurst, D. T. An Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines and Pteridines. J. Chem. Educ. 1980, 58, 377–377. (b) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic Aspects of Condensed Pyrimidine Derivatives. Curr. Org. Chem. 2021, 25, 2625–2649. DOI: 10.2174/1385272825666210706123734. (c) Bojarski, J. T.; Mokrosz, J. L.; Barton, H. J.; Paluchowska, M. H. Recent Progress in Barbituric Acid Chemistry. Adv. Heterocycl. Chem 1985, 38, 229–297. DOI: 10.1016/S0065-2725(08)60921-6.
  • (a) Jiang, S. B.; Lu, H.; Liu, S. W.; Zhao, Q.; He, Y. X.; Debnath, A. K. N-Substituted Pyrrole Derivatives as Novel Human Immunodeficiency Virus Type 1 Entry Inhibitors That Interfere with the gp41 Six-Helix Bundle Formation and Block Virus Fusion. Antimicrob Agents Chemother. 2004, 48, 4349–4359. DOI: 10.1128/AAC.48.11.4349-4359.2004. (b) Lee, H.; Lee, J.; Lee, S. K.; Shin, Y.; Jung, W.; Kim, J. H.; Park, K.; Kim, K.; Cho, H. S.; Ro, S. A Novel Class of Highly Potent, Selective, and Non-Peptidic Inhibitor of Ras Farnesyltransferase (FTase). Bioorg. Med. Chem. Lett. 2001, 11, 3069–3072. DOI: 10.1016/S0960-894X(01)00624-2. (c) Paludetto, M. N.; Bijani, C.; Puisset, F.; Bernardes-Génisson, V.; Arellano, C.; Robert, A. Metalloporphyrin Catalyzed Oxidation of Sunitinib and Pazopanib, Two Anticancer Tyrosine Kinase Inhibitors: evidence for New Potentially Toxic Metabolites. J. Med. Chem. 2018, 61, 7849–7860. DOI: 10.1021/acs.jmedchem.8b00812. (d) Di Santo, R.; Tafi, A.; Costi, R.; Botta, N.; Artico, M.; Corelli, F.; Forte, M.; Caporuscio, F.; Angiolella, L.; Palamara,.; A.T. Antifungal Agents. 11. N-Substituted Derivatives of 1-[(Aryl)(4-Aryl-1H-Pyrrol-3-yl)Methyl]-1H-Imidazole: synthesis, anti-Candida Activity, and QSAR Studies. J. Med. Chem. 2005, 48, 5140–5153. DOI: 10.1021/jm048997u. (e) Okanya, P. W.; Mohr, K. I.; Gerth, K.; Jansen, R.; Müller, R.; Marinoquinolines, A.-F. Pyrroloquinolines from Ohtaekwangia kribbensis (Bacteroidetes). J Nat Prod 2011, 74, 603–608. DOI: 10.1021/np100625a. (f) Idhayadhulla, A.; Kumar, R. S.; Nasser, A. J. A. Synthesis, Characterization and Antimicrobial Activity of New Pyrrole Derivatives. J. Mex. Chem. Soc. 2011, 55, 218–223. (g) Massa, S.; Artico, M.; Corelli, F.; Mai, A.; Di Santo, R.; Cortes, S.; Marongiu, M. E.; Pani, A.; La Colla, P. Synthesis and Antimicrobial and Cytotoxic Activities of Pyrrole-Containing Analogues of Trichostatin A. J. Med. Chem. 1990, 33, 2845–2849. DOI: 10.1021/jm00172a026. (h) Wilkerson, W. W.; Copeland, R. A.; Covington, M.; Trzaskos, J. M. Antiinflammatory 4,5-Diarylpyrroles. 2. Activity as a Function of Cyclooxygenase-2 Inhibition. J. Med. Chem. 1995, 38, 3895–3901. DOI: 10.1021/jm00020a002. (i) Scala, F.; Fattorusso, E.; Menna, M.; Taglialatela-Scafati, O.; Tierney, M.; Kaiser, M.; Tasdemir, D. Bromopyrrole Alkaloids as Lead Compounds Against Protozoan Parasites. Mar. Drugs 2010, 8, 2162–2174. DOI: 10.3390/md8072162. (j) Ragno, R.; Simeoni, S.; Rotili, D.; Caroli, A.; Botta, G.; Brosch, G.; Massa, S.; Mai, A. Class II-Selective Histone Deacetylase Inhibitors. Part 2: Alignment-Independent GRIND 3-D QSAR, Homology and Docking Studies. Eur. J. Med. Chem. 2008, 43, 621–632. DOI: 10.1016/j.ejmech.2007.05.004. (k) Di Sanro, R.; Tafi, A.; Costi, R.; Artico, M.; Miele, G.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Cancio, R.; Maga, G. Arylthiopyrrole (AThP) Derivatives as Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors: synthesis, Structure-Activity Relationships, and Docking Studies (Part 1). Chem. Med. Chem. 2006, 1, 1367–1378. DOI: 10.1002/cmdc.200600119. (l) Ono, N.; Okujima, T. Synthesis of Pyrroles and Their Derivatives from Isocyanides. In Isocyanide Chemistry, 1st ed.; Nenajdenko, V.G., Ed.; Wiley-VCH: Weinheim, Germany, 2012, pp. 385–429. (m) Knorr, L. Synthese von pyrrolderivaten. Ber. Dtsch. Chem. Ges. 1884, 17, 1635–1642. DOI: 10.1002/cber.18840170220. (n) Hantzsch, A. Neue bildungsweise von pyrrolderivaten. Ber. Dtsch. Chem. Ges. 1890, 23, 1474–1476. DOI: 10.1002/cber.189002301243. (o) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. A Useful Synthesis of Pyrroles from Nitroolefins. Tetrahedron 1990, 46, 7587–7598. DOI: 10.1016/S0040-4020(01)89069-4. (p) van Leusen, A. M.; Siderius, H.; Hoogenboom, B. E.; van Leusen, D. A New and Simple Synthesis of the Pyrrole Ring System from Michael Acceptors and Tosylmethylisocyanides. Tetrahedron Lett. 1972, 13, 5337–5340. DOI: 10.1016/S0040-4039(01)85244-8. (q) Paal, C. Synthese von thiophen- und pyrrolderivaten. Ber. Dtsch. Chem. Ges. 1885, 18, 367–371. DOI: 10.1002/cber.18850180175. (r) Milgram, B. C.; Eskildsen, K.; Richter, S. M.; Scheidt, W. R.; Scheidt, K. A. Microwave-Assisted Piloty-Robinson Synthesis of 3,4-Disubstituted Pyrroles. J. Org. Chem. 2007, 72, 3941–3944. DOI: 10.1021/jo070389+.
  • (a) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N. K. Photochemical C-N Bond Forming Reactions for the Synthesis of Five-Membered Fused N-Heterocycles. Synth. Commun. 2020, 50, 1286–1334. DOI: 10.1080/00397911.2020.1713378. (b) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Silver-Assisted Syntheses of Fused Five-Membered N-Heterocycles. Curr. Org. Chem. 2021, 25, 2232–2256. DOI: 10.2174/1385272825666210716144555. (c) Kaur, N. Recent Impact of Microwave-Assisted Synthesis on Benzo Derivatives of Five Membered N-Heterocycles. Synth. Commun. 2015, 45, 539–568. DOI: 10.1080/00397911.2013.824983. (d) Kaur, N.; Ahlawat, N.; Verma, Y.; Bhardwaj, P.; Grewal, P.; Jangid, N. K. Rhodium Catalysis in the Synthesis of Fused Five-Membered N-Heterocycles. Inorg. Nano Met. Chem. 2020, 50, 1260–1289. DOI: 10.1080/24701556.2020.1745838. (e) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Cu-Assisted C-N Bond Formations in Six-Membered N-Heterocycle Synthesis. Synth. Commun. 2020, 50, 1075–1132. DOI: 10.1080/00397911.2019.1695278. (f) Kaur, N. Greener and Expeditious Synthesis of Fused Six-Membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1493–1519. DOI: 10.1080/00397911.2013.828236. (g) Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and Biological Attributes of Pyrimidine Derivatives: A Recent Update. Curr. Org. Synth. 2021, 18, 790–825. DOI: 10.2174/1570179418666210706152515.
  • (a) Desai, N. C.; Kotadiya, G. M.; Trivedi, A. R. Studies on Molecular Properties Prediction, Antitubercular and Antimicrobial Activities of Novel Quinoline Based Pyrimidine Motifs. Bioorg. Med. Chem. Lett. 2014, 24, 3126–3130. DOI: 10.1016/j.bmcl.2014.05.002. (b) Su, L.; Li, J.; Zhou, Z.; Huang, D.; Zhang, Y.; Pei, H.; Guo, W.; Wu, H.; Wang, X.; Liu, M.; et al. Corrigendum to “Design, Synthesis and Evaluation of Hybrid of Tetrahydrocarbazole with 2,4-Diaminopyrimidine Scaffold as Antibacterial Agents” [Eur. J. Med. Chem. 162 (162) (2019) 203–211]. Eur. J. Med. Chem. 2019, 168, 385. DOI: 10.1016/j.ejmech.2019.02.059. (c) Kaur, H.; Machado, M.; de Kock, C.; Smith, P.; Chibale, K.; Prudêncio, M.; Singh, K. Primaquine-Pyrimidine Hybrids: Synthesis and Dual-Stage Antiplasmodial Activity. Eur. J. Med. Chem. 2015, 101, 266–273. DOI: 10.1016/j.ejmech.2015.06.045. (d) Xie, F.; Zhao, H.; Zhao, L.; Lou, L.; Hu, Y. Synthesis and Biological Evaluation of Novel 2,4,5-Substituted Pyrimidine Derivatives for Anticancer Activity. Bioorg. Med. Chem. Lett. 2009, 19, 275–278. DOI: 10.1016/j.bmcl.2008.09.067. (e) Kaldrikyan, M. A.; Grigoryan, L. A.; Geboyan, V. A.; Arsenyan, F. G.; Stepanyan, G. M.; Garibdzhanyan, B. T. Synthesis and Antitumor Activity of Some Disubstituted 5-(3-Methyl-4-Alkoxybenzyl)Pyrimidines. Pharm. Chem. J. 2000, 34, 521–524. DOI: 10.1023/A:1010398911988. (f) Barakat, A.; Soliman, S. M.; Al-Majid, A. M.; Lotfy, G.; Ghabbour, H. A.; Fun, H. K.; Yousuf, S.; Choudhary, M. I.; Wadood, A. Synthesis and Structure Investigation of Novel Pyrimidine-2,4,6-Trione Derivatives of Highly Potential Biological Activity as anti-Diabetic Agent. J. Mol. Struct. 2015, 1098, 365–376. DOI: 10.1016/j.molstruc.2015.06.037. (g) Chen, X. M.; Wang, S. H.; Cui, D. L.; Li, B. The Synthesis and Herbicidal Activity of 5-(Substituted-Phenyl)-4,6-Dioxo-4,5,6,7-Tetrahydropyrazolo[3,4-d]Pyrimidines. J. Heterocycl. Chem. 2015, 52, 607–610. DOI: 10.1002/jhet.2047. (h) Zan, N.; Xie, D.; Li, M.; Jiang, D.; Song, B. Design, Synthesis, and antiToCV Activity of Novel Pyrimidine Derivatives Bearing a Dithioacetal Moiety That Targets ToCV Coat Protein. J. Agric. Food Chem. 2020, 68, 6280–6285. DOI: 10.1021/acs.jafc.0c00987. (i) Zhang, P.; Guan, A.; Xia, X.; Sun, X.; Wei, S.; Yang, J.; Wang, J.; Li, Z.; Lan, J.; Liu, C. Design, Synthesis, and Structure-Activity Relationship of New Arylpyrazole Pyrimidine Ether Derivatives as Fungicides. J. Agric. Food Chem. 2019, 67, 11893–11900. DOI: 10.1021/acs.jafc.9b05185. (j) Li, H.; Zhao, Y.; Sun, P.; Gao, L.; Li, Y.; Xiong, L.; Yang, N.; Zhou, S.; Li, Z. Synthesis and Insecticidal Evaluation of Novel Anthranilic Diamides Derivatives Containing 4-Chlorine Substituted N-Pyridylpyrazole. Chin. J. Chem. 2021, 39, 75–80. (k) Wang, Y.; Li, J.; Zhang, X. Y.; Li, Y. L.; Hu, B.; Sun, H. Controlling Test of High Efficiency and Low Toxicity Fungicides to Botrytis Cinerea on Cucumber. Vegetables 2021, 1, 38–41. DOI: 10.1002/cjoc.202000013. (l) Huang, Y. X.; Li, M.; Pan, X. J.; Wu, X. M.; Xiang, X. L.; Li, W. Z. Control Effect of Several Fungicides on Grape Downy Mildew. Agrochemicals 2018, 57, 836–839. (m) Shi, J. Q.; Zhang, R. Q.; He, L. N.; Chen, J.; Hu, A. L.; Yin, X. H. Screening of Fungicide for Controlling Kiwifruit Leaf Spot. Agrochemicals 2021, 60, 294–296. (n) Auti, P. S.; George, G.; Paul, A. T. Recent Advances in the Pharmacological Diversification of Quinazoline/Quinazolinone Hybrids. RSC Adv. 2020, 10, 41353–41392. DOI: 10.1039/d0ra06642g.
  • (a) Barker, J.; Kilner, M. The Coordination Chemistry of the Amidine Ligand. Coord. Chem. Rev. 1994, 133, 219–300. DOI: 10.1016/0010-8545(94)80059-6. (b) Bradford, N. C.; Cameron, A.; Barrett, W. Some Pharmacological Properties of a Series of Acetamidines and Propionamidines. J. Pharmacol. Exp. Ther. 1950, 99, 353–361. (c) Crossland, I.; Grevil, F. S. A Convenient Preparation of Acetamidine. Acta Chem. Scand. Ser. B. 1981, 35, 605–605.
  • Norrestam, R. Structure of Bis(Acetamidinium)Carbonate Monohydrate, 2(C2H7N2+).CO32-.H2O, at 108 K. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1984, 40, 297–299. DOI: 10.1107/S0108270184003887.
  • Kopylovich, M. N.; Kukushkin, V. Y.; Guedes da Silva, M. F. C.; Haukka, M.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L. Conversion of Alkane Nitriles to Amidines and Carboxylic Acids Mediated by a Cobalt(II)-Ketoxime System. J. Chem. Soc. Perkin Trans. 1, 2001, 13, 1569–1573.
  • Taylor, E. C.; Ehrhart, W. A. A Convenient Synthesis of Formamidine and Acetamidine Acetate. J. Am. Chem. Soc. 1960, 82, 3138–3141. DOI: 10.1021/ja01497a039.
  • Krechl, S.; Böehm, S.; Smrčková, J.; Kuthan, J. Simple Amidinium Carboxylates - an MO Treatment of Molecular Geometry and Electronic Structure. Collect Czech. Chem. Commun. 1989, 54, 673–683. DOI: 10.1135/cccc19890673.
  • Jalový, Z.; Růžička, A. Diacetamidinium Sulfate. Acta Cryst. Sect E: Struct. Rep. Online 2011, E66, 3346–3347.
  • Jalový, Z.; Ottis, J.; Růžicka, A.; Lyčka, A.; Latypov, N. V. Organic Salts of Dinitromethane. Tetrahedron 2009, 65, 7163–7170. DOI: 10.1016/j.tet.2009.06.014.
  • Gautier, J.-A.; Miocque, M.; Farnoux, C. C. Preparation and Synthetic Use of Amidines. The Chemistry of Amidines and Imidates. John Wiley & Sons, New York, NY, 1975; pp. 283–348.
  • Bredereck, H.; Effenberger, F.; Hofmann, A. The Reactions of Amidines with Formylating Agents: Syntheses of 2,4-Disubstituted Triazines. Chem. Ber. 1963, 96, 3265–3269. DOI: 10.1002/cber.19630961223.
  • Lagoja, I. M. Pyrimidine as Constituent of Natural Biologically Active Compounds. Chem. Biodivers. 2005, 2, 1–50. DOI: 10.1002/cbdv.200490173.
  • Schenone, S.; Bruno, O.; Radi, M.; Botta, M. New Insights into Small-Molecule Inhibitors of Bcr-Abl. Med. Res. Rev. 2010, 31, 1–41.
  • Hu, M.; Wu, J.; Zhang, Y.; Oiu, F.; Yu, Y. Synthesis of Polysubstituted 5-Aminopyrimidines from α-Azidovinyl Ketones and Amidines. Tetrahedron 2011, 67, 2676–2680. DOI: 10.1016/j.tet.2011.01.062.
  • Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Synthesis and Reactions of 1,1-Diamino-2,2-Dinitroethylene. Tetrahedron 1998, 54, 11525–11536. DOI: 10.1016/S0040-4020(98)00673-5.
  • Dox, A. W.; Yoder, L. Pyrimidines from Alkylmalonic Esters and Aromatic Amidines. J. Am. Chem. Soc. 1922, 44, 361–366. DOI: 10.1021/ja01423a015.
  • Ferris, L. P.; Ronzio, A. R. A Series of 2-Methyl-5-Alkyl-4,6-Dihydroxypyrimidines. J. Am. Chem. Soc. 1940, 62, 606–607. DOI: 10.1021/ja01860a051.
  • Henze, H. R.; Clegg, W. J.; Smart, C. W. Researches on Pyrimidines: Certain Derivatives of 2-Methylpyrimidine. J. Org. Chem. 1952, 17, 1320–1327. DOI: 10.1021/jo50010a007.
  • Dopp, D.; Gomaa, A. M.; Henkel, G.; Nour El-Din, A. M. Reaction of N1,N2-Diarylamidines with Chloranil and 2,3-Dichloro-1,4-Naphthoquinone. J. Heterocycl. Chem. 1995, 32, 603–610. DOI: 10.1002/jhet.5570320240.
  • Saturnino, C.; Abarghaz, M.; Schmitt, M.; Wermuth, C.; Bourguignon, J. Heterocyclic Amidines: I. A One-Step Synthesis of New α-Substituted Imidazolylphenylacetic Acids. Heterocycles 1995, 41, 1491–1502.
  • Brandenburg, J.; Kaepplinger, C.; Beckert, R. Vinylogous Tetraazafulvalenes: New Deeply Coloured Compounds Derived from Simple Amidines. Synthesis 1996, 11, 1302–1304.
  • Gupta, S.; Agarwal, P. K.; Kundu, B. Catalyst/Ligand-Free Synthesis of Benzimidazoles and Quinazolinones from Amidines Via Intramolecular Transamination Reaction. Tetrahedron Lett 2010, 51, 1887–1890. DOI: 10.1016/j.tetlet.2010.02.019.
  • Katritzky, A. R.; Yousaf, T. I. A C-13 Nuclear Magnetic Resonance Study of the Pyrimidine Synthesis by the Reactions of 1,3-Dicarbonyl Compounds with Amidines and Ureas. Can. J. Chem. 1986, 64, 2087–2093. DOI: 10.1139/v86-344.
  • Nenajdenko, V.; Sanin, A.; Kuz’min, V.; Balenkova, E. Synthesis and Stereochemistry of Trifluoromethyl Substituted Heterocycles of the Pyrimidine Series. Russ. J. Org. Chem. 1996, 32, 1529–1539.
  • Schenone, P.; Sansebastiano, L.; Mosti, L. Reaction of 2-Dimethylaminomethylene-1,3-Diones with Dinucleophiles. VIII. Synthesis of Ethyl and Methyl 2,4-Disubstituted 5-Pyrimidinecarboxylates. J. Heterocycl. Chem. 1990, 27, 295–305. DOI: 10.1002/jhet.5570270234.
  • Redd, J.; Bradshaw, J.; Huszthy, P.; Izatt, R. New Pyrimidino-Crown Ether Ligands. J. Heterocycl. Chem. 1994, 31, 1047–1052. DOI: 10.1002/jhet.5570310459.
  • Roberts, R.; Landor, S.; Bolessa, E. 1,2-Di-Butyl-3,4-Diphenylcyclobutadiene Palladium Chloride Complex. Tetrahedron Lett. 1994, 35, 3021–3024. DOI: 10.1016/S0040-4039(00)76817-1.
  • Cho, H.; Ueda, M.; Ohnaka, Y.; Hayashimatau, M. Synthesis of Novel 5-Alkoxycarbonyl-5,6-Dihydropyrimidin-4(3H)-Ones from 3-Substituted 2-Alkoxycarbonyl-2-Propenoates and Amidines. Heterocycles 1984, 22, 1959–1962. DOI: 10.3987/R-1984-09-1959.
  • Cho, H.; Shima, K.; Hayashimatau, M.; Ohnaka, Y.; Mizuno, A.; Takeuchi, Y. Synthesis of Novel Dihydropyrimidines and Tetrahydropyrimidines. J. Org. Chem. 1985, 50, 4227–4230. DOI: 10.1021/jo00222a009.
  • Marzinzik, A. L.; Felder, E. R. Key Intermediates in Combinatorial Chemistry: Access to Various Heterocycles from α,β-Unsaturated Ketones on the Solid Phase. J. Org. Chem. 1998, 63, 723–727. DOI: 10.1021/jo971620u.
  • Obrecht, D.; Abrecht, C.; Grieder, A.; Villalgordo, J. M. A Novel and Efficient Approach for the Combinatorial Synthesis of Structurally Diverse Pyrimidines on Solid Support. Helv. Chim. Acta 1997, 80, 65–72. DOI: 10.1002/hlca.19970800106.
  • Srivastava, S. K.; Haq, W.; Chauhan, P.M.S. A Solid Phase Approach to Substituted Pyrimidines and Their Conversion into Condensed Heterocycles for Potential Use in Combinatorial Chemistry. Comb. Chem. High Throughput Screen 1999, 2, 33–38. DOI: 10.2174/1386207302666220126184911.
  • Katritzky, A. R.; Serdyuk, L.; Chassaning, C.; Toader, D.; Xiaojing, W.; Forood, B.; Flatt, B.; Sun, C.; Vo, K. Syntheses of 2-Alkylamino- and 2-Dialkylamino-4,6-Diarylpyridines and 2,4,6-Trisubstituted Pyrimidines Using Solid-Phase-Bound Chalcones. J. Comb. Chem. 2000, 2, 182–185. DOI: 10.1021/cc990072q.
  • Morelli, C. F.; Manferdini, M.; Veronese, A. C. A New Route to the Synthesis of Pyrazole and Pyrimidine C-Nucleoside Derivatives. Tetrahedron 1999, 55, 10803–10814. DOI: 10.1016/S0040-4020(99)00595-5.
  • Boykin, D.; Kumar, A.; Bajic, M.; Xiao, G.; Wilson, W. Anti-Pneumocystis carinii Pneumonia Activity of Dicationic Diaryl Methylprimidines. Eur. J. Chem. 1997, 32, 965–972.
  • Veronese, A. C.; Morelli, C. F. A New and Efficient Route to the Synthesis of Pyrazole and Pyrimidine C-Nucleoside Derivatives. Tetrahedron Lett. 1998, 39, 3853–3856. DOI: 10.1016/S0040-4039(98)00631-5.
  • Alker, D.; Campbell, S. F.; Cross, P. E.; Burges, R. A.; Carter, A. J.; Gardiner, D. G. Long-Acting Dihydropyridine Calcium Antagonists. 3. Synthesis and Structure-Activity Relationships for a Series of 2-[(Heterocyclylmethoxy)Methyl] Derivatives. J. Med. Chem. 1989, 32, 2381–2388. DOI: 10.1021/jm00130a026.
  • Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Synthesis of β-Keto Esters in-Flow and Rapid Access to Substituted Pyrimidines. J. Org. Chem. 2010, 75, 8674–8676. DOI: 10.1021/jo101783m.
  • Bagley, M. C.; Hughes, D. D.; Taylor, P. H. Highly Efficient Synthesis of Pyrimidines Under Microwave-Assisted Conditions. Synlett 2003, 2, 259–261.
  • Romanov, A. R.; Rulev, A. Y.; Ushakov, I. A.; Muzalevskiy, V. M.; Nenajdenko, V. G. One-Pot, Atom and Step Economy (Pase) Assembly of Trifluoromethylated Pyrimidines from CF3-Ynones. Eur. J. Org. Chem. 2017, 28, 4121–4129.
  • Dalinger, I. L.; Vatsadse, I. A.; Shevelev, S. A.; Ivachtchenko, A. V. Liquid-Phase Synthesis of Combinatorial Libraries Based on 7-Trifluoromethyl-Substituted Pyrazolo[1,5-a]Pyrimidine Scaffold. J. Comb. Chem. 2005, 7, 236–245. DOI: 10.1021/cc049855o.
  • Xie, F.-C.; Cheng, G.; Hu, Y. Three-Component, One-Pot Reaction for the Combinatorial Synthesis of 1,3,4-Substituted Pyrazoles. J. Comb. Chem. 2006, 8, 286–288. DOI: 10.1021/cc050159d.
  • Frasinyuk, M. S.; Khilya, V. P. Preparation and Reactions of Isoflavone Heteroanalogs. Chem. Heterocycl. Compd. 1999, 35, 3–22. DOI: 10.1007/BF02251655.
  • Khilya, V. P.; Turov, A. V.; Tkschuk, T. M.; Shevchuk, L. I. Reaction of Thiazole Analogs of Isoflavolignans with Amidines. Chem. Nat. Compd. 2001, 37, 307–310. DOI: 10.1023/A:1013702014136.
  • Sosnovskikh, V. Y.; Usachev, B. I.; Sizov, A. Y.; Barabanov, M. A. A Simple One-Pot Synthesis of 2,6-Disubstituted 4-(Polyfluoroalkyl)Pyridines and -Pyrimidines by Reaction of 2-Polyfluoroalkylchromones with Aromatic Methyl Ketimines and Amidines. Synthesis 2004, 6, 942–948.
  • Yokoe, S.; Sugita, Y.; Shirataki, Y. Facile Synthesis of Isoflavones by the Cross-Coupling Reaction of 3-Iodochromone with Arylboronic Acids. Chem. Pharm. Bull. 1989, 37, 529–530. DOI: 10.1248/cpb.37.529.
  • Felpin, F. X. Practical and Efficient Suzuki-Miyaura Cross-Coupling of 2-Iodocycloenones with Arylboronic Acids Catalyzed by Recyclable Pd(0)/C. J. Org. Chem. 2005, 70, 8575–8578. DOI: 10.1021/jo051501b.
  • Xie, F.; Zhao, H.; Zhao, L.; Lou, L.; Hu, Y. Synthesis and Biological Evaluation of Novel 2,4,5-Substituted Pyrimidine Derivatives for Anticancer Activity. Bioorg. Med. Chem. Lett. 2009, 19, 275–278. DOI: 10.1016/j.bmcl.2008.09.067.
  • Ram, V. J.; Nath, M.; Srivastava, P.; Sarkhel, S.; Maulik, P. R. A Facile Access to the Synthesis of Functionalised Unsymmetrical Biaryls from 2H-Pyran-2-Ones through Carbanion Induced C–C Bond Formation. J. Chem. Soc. Perkin Trans. 1 2000, 22, 3719–3723.
  • Ram, V. J.; Srivastava, P.; Agarwal, N.; Sharon, A.; Maulik, P. R. One-Pot Synthesis of Unsymmetrical Biaryls from Suitably Functionalized 2H-Pyran-2-Ones Through Carbanion-Induced Ring-Transformation Reactions. J. Chem. Soc., Perkin Trans. 1 2001, 16, 1953–1959.
  • Sugita, Y.; Yin, S.; Yokoe, I. Reaction of 3-Iodochromone with Nucleophiles. 2. Reaction with Mercaptoazoles. Heterocycles 2000, 53, 2191–2199. DOI: 10.3987/COM-00-9007.
  • Caldwell, W. T.; Sayin, A. N. The Preparation of a Pyrimidine Analog (Isostere) of Promizole and Other Substituted Pyrimidines. J. Am. Chem. Soc. 1952, 74, 4314–4317. DOI: 10.1021/ja01137a019.
  • Nandi, B.; Das, K.; Kundu, N. G. An Unusual Cleavage of a C-S Bond with Concurrent S-Arylation Under Palladium-Copper Catalysis. Tetrahedron Lett. 2000, 41, 7259–7262. DOI: 10.1016/S0040-4039(00)01253-3.
  • Cheng, G.; Li, S.; Li, J.; Hu, Y. Three-Component, One-Pot Synthesis of Novel 2,4-Substituted 5-Azolylthiopyrimidine Library for Screening Against Anti-Influenza Virus A. Bioorg. Med. Chem. Lett. 2008, 18, 1177–1180. DOI: 10.1016/j.bmcl.2007.11.117.
  • Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. An Improved Catalyst System for Aromatic Carbon-Nitrogen Bond Formation: The Possible Involvement of Bis(Phosphine) Palladium Complexes as Key Intermediates. J. Am. Chem. Soc. 1996, 118, 7215–7216. DOI: 10.1021/ja9608306.
  • Gagoi, J.; Gogoi, P.; Bezbaruah, P.; Boruah, R. C. Microwave-Assisted Pd-Catalyzed Synthesis of Fused Steroidal and Non-Steroidal Pyrimidines from β-Halo-α,β-Unsaturated Aldehydes. Tetrahedron Lett. 2013, 54, 7136–7139. DOI: 10.1016/j.tetlet.2013.10.094.
  • Hale, W. J.; Brill, H. C. The Formation of Pyrimidines by Use of Nitromalonic Aldehyde. J. Am. Chem. Soc. 1912, 34, 82–94. DOI: 10.1021/ja02202a017.
  • Roblin, R. O.; Winnek, P.S.; English, J. P. Studies in Chemotherapy. IV. Sulfanilamidopyrimidines. J. Am. Chem. Soc. 1942, 64, 567–570. DOI: 10.1021/ja01255a030.
  • Fanta, P. E.; Hedman, E. A. 2-Substituted 5-Nitropyrimidines by the Condensation of Sodium Nitromalonaldehyde with Amidines. J. Am. Chem. Soc. 1956, 78, 1434–1437. DOI: 10.1021/ja01588a045.
  • Caton, M. P. L.; Hurst, D. T.; McOmie, J. F. W.; Hunt, R. R. Pyrimidines. Part XVI. Syntheses of Bipyrimidinyls and of Halogeno- and Amidino-Pyrimidines. J. Chem. Soc. 1967, 0, 1204–1209.
  • Hurst, D.; Christophides, J. The Synthesis of Some 2-Substituted 5-Nitropyrimidines. Heterocycles 1977, 6, 1999–2004. DOI: 10.3987/R-1977-12-1999.
  • Rajappa, S.; Nair, M. D. Ring Synthesis of Heteroaromatic Nitro Compounds. Adv. Heterocycl. Chem. 1980, 25, 113–145. DOI: 10.1016/S0065-2725(08)60691-1.
  • Deshmukh, M. B.; Salunkhe, S. M.; Patil, D. R.; Anbhule, P. V. A Novel and Efficient One Step Synthesis of 2-Amino-5-Cyano-6-Hydroxy-4-Aryl Pyrimidines and Their anti-Bacterial Activity. Eur. J. Med. Chem. 2009, 44, 2651–2654. DOI: 10.1016/j.ejmech.2008.10.018.
  • Undare, S. S.; Valekar, N. J.; Patravale, A. A.; Jamale, D. K.; Vibhute, S. S.; Walekar, L. S.; Kolekar, G. B.; Deshmukh, M. B.; Anbhule, P. V. One-Pot Synthesis and In Vivo Biological Evaluation of New Pyrimidine Privileged Scaffolds as Potent Anti-Inflammatory Agents. Res. Chem. Intermed. 2016, 42, 4373–4386. DOI: 10.1007/s11164-015-2281-1.
  • Middleton, W. J.; Engelhardt, V. A.; Amer, J. Cyanocarbon Chemistry. IX. Heterocyclic Compounds from Dicyanoketene Acetals. Chem. Soc. 1958, 80, 2829–2832. DOI: 10.1021/ja01544a059.
  • Katz, R. B.; Mitchell, M. B.; Sammes, P. G. A Synthesis of Some Pyridinylpyriuidines from Ketenedithioacetals. Tetrahedron 1989, 45, 1801–1814. DOI: 10.1016/S0040-4020(01)80045-4.
  • Hamamichi, N.; Miyasaka, T. The Synthesis of 6-C-Substituted 9-Methoxymethylpurine Derivatives. J. Heterocycl. Chem. 1990, 27, 835–838. DOI: 10.1002/jhet.5570270403.
  • Goldman, D. M. Novel Synthesis of 2-Methyl-3,4,5-Trichloropyrimidine. Novel Synthesis of 2-Methyl-3,4,5-Trichloropyrimidine. NJIT 2002, 6, 2–40.
  • Ohno, S.; Mizukoshi, K.; Komatsu, O.; Kuno, Y.; Nakamura, Y.; Kato, E.; Nagasaka, M. Synthesis and Hypoglycemic Activity of 7,8-Dihydro-6H-Thiopyrano(3,2-d)Pyrimidine Derivatives and Related Compounds. Chem. Pharm. Bull. 1986, 34, 4150–4165. DOI: 10.1248/cpb.34.4150.
  • Gangjee, A.; Zhao, Y.; Lin, L.; Raghavan, S.; Roberts, E. G.; Risinger, A. L.; Hamel, H.; Moobery, S. L. Synthesis and Discovery of Water-Soluble Microtubule Targeting Agents That Bind to the Colchicine Site on Tubulin and Circumvent Pgp Mediated Resistance. J. Med. Chem. 2010, 53, 8116–8128. DOI: 10.1021/jm101010n.
  • Ahluwalia, V.; Gupta, C.; Khanduri, C. A New One-Pot Synthesis of Some Novel Hexahydroquinazoline Derivatives. Indian J. Chem. 1992, 31B, 355–356.
  • Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Simple and Efficient Approach to Quinazolinones Under Mild Copper-Catalyzed Conditions. Angew. Chem. Int. Ed. 2009, 48, 348–351. DOI: 10.1002/anie.200804675.
  • Croce, P. D.; Ferraccioli, R.; Rosa, C. L. Reactivity of 1-Aryl-4-Dimethylamino-2-Phenyl-1,3-Diaza-1,3-Butadienes Towards Dienophiles, 1,3-Dipoles and Carbanions. Heterocycles 1997, 45, 1309–1318. DOI: 10.3987/COM-97-7808.
  • Buscemi, S.; Pace, A.; Vivona, N.; Caronna, T.; Galia, A. Photoinduced Single Electron Transfer on 5-Aryl-1,2,4-Oxadiazoles: some Mechanistic Investigations in the Synthesis of Quinazolin-4-Ones. J. Org. Chem 1999, 64, 7028–7033. DOI: 10.1021/jo990298f.
  • Mayer, J. P.; Lewis, G. S.; Curtis, M. J.; Zhang, J. Solid Phase Synthesis of Quinazolinones. Tetrahedron Lett. 1997, 38, 8445–8448. DOI: 10.1016/S0040-4039(97)10276-3.
  • Dean, W. D.; Papadopoulos, E. P. N-Ethoxycarbonylamidines as Starting Materials and Intermediates in the Synthesis of Heterocyclic Compounds. J. Heterocycl. Chem. 1982, 19, 171–176. DOI: 10.1002/jhet.5570190133.
  • Gardner, B.; Kanagasooriam, A. J. S.; Smyth, R. M.; Williams, A. Mechanism of Alkaline Cyclization of 2-(Substituted Benzamido)Benzamides to 4-Quinazolinones. J. Org. Chem. 1994, 21, 6245–6250.
  • West, R. A.; Beauchamp, L. 2-Alkyl(Aryl)- and 2,7-Dimethyl-4-Substituted Aminopyrrolo[2,3-d]Pyrimidines. J. Org. Chem. 1961, 26, 3809–3812. DOI: 10.1021/jo01068a044.
  • Thiyagarajan, A.; Salim, M. T.; Balaraju, T.; Bal, C.; Baba, M.; Sharon, A. Structure Based Medicinal Chemistry Approach to Develop 4-Methyl-7-Deazaadenine Carbocyclic Nucleosides as anti-HCV Agent. Bioorg. Med. Chem. Lett. 2012, 22, 7742–7747. DOI: 10.1016/j.bmcl.2012.09.072.
  • Cho, J. H.; Bernard, D. L.; Sidwell, R. W.; Kern, E. R.; Chu, C. K. Synthesis of Cyclopentenyl Carbocyclic Nucleosides as Potential Antiviral Agents Against Orthopoxviruses and SARS. J. Med. Chem. 2006, 49, 1140–1148. DOI: 10.1021/jm0509750.
  • Kasula, M.; Samunuri, R.; Chakravarty, H.; Bal, C.; Baba, M.; Jha, A. K.; Sharon, A. Regioselective Synthesis of Pyrazolo[3,4-d]Pyrimidine Based Carbocyclic Nucleosides as Possible Antiviral Agent. Nucleosides Nucleotides Nucleic Acids 2016, 35, 43–52. DOI: 10.1080/15257770.2015.1114126.
  • Bredereck, H.; Hennig, I.; Pfleiderer, W.; Weber, G. Synthesen in der purinreihe, 111. Mitteil.’): Umsetzungcn der acetate des 4,6-diamino-uracils. Synthesen von coftein, theobromin und theophyllin. Chem. Ber 1953, 86, 333–353. DOI: 10.1002/cber.19530860306.
  • Fields, M.; Walz, D. E.; Rothchild, S. The Addition of Bromine Chloride to Carbon-Carbon Double Bonds. J. Am. Chem. Soc. 1951, 73, 998–1000.
  • Acker, D. S.; Castle, J. E. A Convenient Laboratory Synthesis of Certain 6-Hydroxypurines and 7-Hydroxy-v-Triazolo[d]Pyrimidines. J. Chem. Soc. 1958, 23, 2010–2011.
  • Dornow, A.; Helberg, J. Synthesen stickstoffhaltiger heterocyclen, XXIV 1. Xdarstellung und ortho-kondensation einiger 4.5-disubstituierter 1.2.3-triazole. Chem. Ber. 1960, 93, 2001–2010. DOI: 10.1002/cber.19600930914.
  • Albert, A.; Tratt, K. 1,2,3,4,6-Penta-Azaindenes (‘8-Azapurines’). Part III. A New Route to the 7-Methyl-8-Azapurines. J. Chem. Soc. (C) 1968, 0, 344–347.
  • Albert, A.; Trotter, M. A. v-Triazolo[4,5-d]Pyrimidines (8-Azapurines). Part 21 Synthesis of 2-Substituted 8-Azapurin-6-Ones from 4-Amino-1,2,3-Triazole-5-Carboxamides and Amidines. J. Chem. Soc. Perkin 1979, 1, 922–924. 0,

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.