Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 9
137
Views
7
CrossRef citations to date
0
Altmetric
Articles

Three-component regioselective synthesis and antibacterial evaluation of new arene-linked bis(pyrazolo[1,5-a]pyrimidine) hybrids

ORCID Icon & ORCID Icon
Pages 658-672 | Received 30 Jan 2023, Published online: 22 Mar 2023

References

  • Maddila, S.; Gorle, S.; Seshadri, N.; Lavanya, P.; Jonnalagadda, S. B. Synthesis, Antibacterial and Antifungal Activity of Novel Benzothiazole Pyrimidine Derivatives. Arabian J. Chem. 2016, 9, 681–687. DOI: 10.1016/j.arabjc.2013.04.003.
  • Chen, P. J.; Yang, A.; Gu, Y. F.; Zhang, X. S.; Shao, K. P.; Xue, D. Q.; He, P.; Jiang, T. F.; Zhang, Q. R.; Liu, H. M. Synthesis, in Vitro Antimicrobial and Cytotoxic Activities of Novel Pyrimidine-Benzimidazol Combinations. Bioorg. Med. Chem. Lett. 2014, 24, 2741–2743. DOI: 10.1016/j.bmcl.2014.04.037.
  • Hilmy, K. M. H.; Khalifa, M. M.; Hawata, M. A. A.; Keshk, R. M. A.; El-Torgman, A. Synthesis of New Pyrrolo[2,3-d]Pyrimidine Derivatives as Antibacterial and Antifungal Agents. Eur. J. Med. Chem. 2010, 45, 5243–5250. DOI: 10.1016/j.ejmech.2010.08.043.
  • Meneghesso, S.; Vanderlinden, E.; Stevaert, A.; McGuigan, C.; Balzarini, J.; Naesens, L. Synthesis and Biological Evaluation of Pyrimidine Nucleoside Monophosphate Prodrugs Targeted against Influenza Virus. Antiviral. Res. 2012, 94, 35–43. DOI: 10.1016/j.antiviral.2012.01.007.
  • Maurya, S. S.; Khan, S. I.; Bahuguna, A.; Kumar, D.; Rawat, D. S. Synthesis, Antimalarial Activity, Heme Binding and Docking Studies of N-Substituted 4-Aminoquinoline-Pyrimidine Molecular Hybrids. Eur. J. Med. Chem. 2017, 129, 175–185. DOI: 10.1016/j.ejmech.2017.02.024.
  • Bhalgat, C. M.; Ali, M. I.; Ramesh, B.; Ramu, G. Novel Pyrimidine and Its Triazole Fused Derivatives: Synthesis and Investigation of Antioxidant and anti-Inflammatory Activity. Arabian J. Chem. 2014, 7, 986–993. DOI: 10.1016/j.arabjc.2010.12.021.
  • Huang, Y. Y.; Wang, L. Y.; Chang, C. H.; Kuo, Y. H.; Kaneko, K.; Takayama, H.; Kimura, M.; Juang, S. H.; Wong, F. F. One-Pot Synthesis and Antiproliferative Evaluation of Pyrazolo[3,4-d]Pyrimidine Derivatives. Tetrahedron. 2012, 68, 9658–9664. DOI: 10.1016/j.tet.2012.09.054.
  • El-Sayed, N. S.; El-Bendary, E. R.; El-Ashry, S. M.; El-Kerdawy, M. M. Synthesis and Antitumor Activity of New Sulfonamide Derivatives of Thiadiazolo[3,2-a]Pyrimidines. Eur. J. Med. Chem. 2011, 46, 3714–3720. DOI: 10.1016/j.ejmech.2011.05.037.
  • Kong, W.; Zhou, Y.; Song, Q. Lewis-Acid Promoted Chemoselective Condensation of 2-Aminobenzimidazoles or 3-Aminoindazoles with 3-Ethoxycyclobutanones to Construct Fused Nitrogen Heterocycles. Adv. Synth. Catal. 2018, 360, 1943–1948. DOI: 10.1002/adsc.201701641.
  • Teleb, M. A. M.; Mekky, A. E. M.; Sanad, S. M. H. 3-Aminothieno[2,3-b]Pyridine-2-Carboxylate: Effective Precursor for Microwave-Assisted Three Components Synthesis of New Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidin-4(3H)-One Hybrids. J. Heterocyclic. Chem. 2021, 58, 1825–1835. DOI: 10.1002/jhet.4313.
  • Sanad, S. M. H.; Mekky, A. E. M. Piperazine‐Mediated Tandem Synthesis of Bis(Thieno[2,3‐b]Pyridines): Versatile Precursors for Related Fused [1,2,4]Triazolo[4,3‐a]Pyrimidines. J. Heterocyclic. Chem. 2020, 57, 3142–3152. DOI: 10.1002/jhet.4021.
  • Mekky, A. E. M.; Ahmed, M. S. M.; Sanad, S. M. H.; Abdallah, Z. A. Bis(Benzofuran-Enaminone) Hybrid Possessing Piperazine Linker: Versatile Precursor for Microwave Assisted Synthesis of Bis(Pyrido[2′,3′:3,4]Pyrazolo[1,5-a]Pyrimidines. Synth. Commun. 2021, 51, 1085–1099. DOI: 10.1080/00397911.2020.1867745.
  • Sanad, S. M. H.; Mekky, A. E. M. Synthesis and Antibacterial Evaluation of New Pyrido[3',2':4,5]Thieno[3,2-d] Pyrimidin-4(3H)-One Hybrids Linked to Different Heteroarene Units. Mendeleev. Commun. 2021, 31, 862–864. DOI: 10.1016/j.mencom.2021.11.031.
  • Drev, M.; Grošelj, U.; Mevec, Š.; Pušavec, E.; Štrekelj, J.; Golobič, A.; Dahmann, G.; Stanovnik, B.; Svete, J. Regioselective Synthesis of 1-and 4-Substituted 7-Oxopyrazolo[1,5-a]Pyrimidine-3-Carboxamides. Tetrahedron. 2014, 70, 8267–8279. DOI: 10.1016/j.tet.2014.09.020.
  • Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Bonaccini, C.; Malmberg Aiello, P.; Besnard, F.; et al. Synthesis and Benzodiazepine Receptor Affinity of Pyrazolo[1,5-a]Pyrimidine Derivatives. 3. New 6-(3-Thienyl) Series as α1 Selective Ligands. J. Med. Chem. 2003, 46, 310–313. DOI: 10.1021/jm020999w.
  • Modi, P.; Patel, S.; Chhabria, M. Structure-Based Design, Synthesis and Biological Evaluation of a Newer Series of Pyrazolo[1,5-a]Pyrimidine Analogues as Potential anti-Tubercular Agents. Bioorg. Chem. 2019, 87, 240–251. DOI: 10.1016/j.bioorg.2019.02.044.
  • Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Besnard, F.; Costa, B.; Montali, M.; et al. A Novel Selective GABAA α1 Receptor Agonist Displaying Sedative and Anxiolytic-like Properties in Rodents. J. Med. Chem. 2005, 48, 6756–6760. DOI: 10.1021/jm058002n.
  • Fraley, M. E.; Rubino, R. S.; Hoffman, W. F.; Hambaugh, S. R.; Arrington, K. L.; Hungate, R. W.; Bilodeau, M. T.; Tebben, A. J.; Rutledge, R. Z.; Kendall, R. L.; et al. Optimization of a Pyrazolo[1,5-a]Pyrimidine Class of KDR Kinase Inhibitors: Improvements in Physical Properties Enhance Cellular Activity and Pharmacokinetics. Bioorg. Med. Chem. Lett. 2002, 12, 3537–3541. DOI: 10.1016/S0960-894X(02)00525-5.
  • Powell, D.; Gopalsamy, A.; Wang, Y. D.; Zhang, N.; Miranda, M.; McGinnis, J. P.; Rabindran, S. K. Pyrazolo[1,5-a]Pyrimidin-7-yl Phenyl Amides as Novel Antiproliferative Agents: Exploration of Core and Headpiece Structure–Activity Relationships. Bioorg. Med. Chem. Lett. 2007, 17, 1641–1645. DOI: 10.1016/j.bmcl.2006.12.116.
  • Heathcote, D. A.; Patel, H.; Kroll, S. H. B.; Hazel, P.; Periyasamy, M.; Alikian, M.; Kanneganti, S. K.; Jogalekar, A. S.; Scheiper, B.; Barbazanges, M.; et al. A Novel Pyrazolo[1,5-a]Pyrimidine is a Potent Inhibitor of Cyclin-Dependent Protein Kinases 1, 2, and 9, Which Demonstrates Antitumor Effects in Human Tumor Xenografts following Oral Administration. J. Med. Chem. 2010, 53, 8508–8522. DOI: 10.1021/jm100732t.
  • Labroli, M.; Paruch, K.; Dwyer, M. P.; Alvarez, C.; Keertikar, K.; Poker, C.; Rossman, R.; Duca, J. S.; Fischmann, T. O.; Madison, V.; et al. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based CHK1 Inhibitors: A Template-Based approach-Part 2. Bioorg. Med. Chem. Lett. 2011, 21, 471–474. DOI: 10.1016/j.bmcl.2010.10.114.
  • Gopalsamy, A.; Ciszewski, G.; Hu, Y.; Lee, F.; Feldberg, L.; Frommer, E.; Kim, S.; Collins, K.; Wojciechowicz, D.; Mallon, R. Identification of Pyrazolo[1,5-a]Pyrimidine-3-Carboxylates as B-Raf Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 2735–2738. DOI: 10.1016/j.bmcl.2009.03.129.
  • Wang, X.; Magnuson, S.; Pastor, R.; Fan, E.; Hu, H.; Tsui, V.; Deng, W.; Murray, J.; Steffek, M.; Wallweber, H.; et al. Discovery of Novel Pyrazolo[1,5-a]Pyrimidines as Potent pan-Pim Inhibitors by Structure-and Property-Based Drug Design. Bioorg. Med. Chem. Lett. 2013, 23, 3149–3153. DOI: 10.1016/j.bmcl.2013.04.020.
  • Fahim, A. M; Farag, A. M. Synthesis, Antimicrobial Evaluation, Molecular Docking and Theoretical Calculations of Novel Pyrazolo[1,5-a]Pyrimidine Derivatives. J. Mol. Struct. 2020, 1199, 127025. DOI: 10.1016/j.molstruc.2019.127025.
  • Fouda, A. M.; Abbas, H. A. S.; Ahmed, E. H.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Synthesis, in Vitro Antimicrobial and Cytotoxic Activities of Some New Pyrazolo[1,5-a]Pyrimidine Derivatives. Molecules. 2019, 24, 1080. DOI: 10.3390/molecules24061080.
  • Kokorekin, V. A.; Khodonov, V. M.; Neverov, S. V.; Grammatikova, N. É.; Petrosyan, V. A. Metal-Free” Synthesis and Antifungal Activity of 3-Thiocyanatopyrazolo[1,5-a]Pyrimidines. Russ. Chem. Bull. 2021, 70, 600–604. DOI: 10.1007/s11172-021-3131-5.
  • Zhang, J.; Peng, J. F.; Bai, Y. B.; Wang, P.; Wang, T.; Gao, J. M.; Zhang, Z. T. Synthesis of Pyrazolo[1,5-a]Pyrimidine Derivatives and Their Antifungal Activities against Phytopathogenic Fungi In Vitro. Mol. Divers. 2016, 20, 887–896. DOI: 10.1007/s11030-016-9690-y.
  • Hassan, A. S.; Hafez, T. S.; Osman, S. A. Synthesis, Characterization, and Cytotoxicity of Some New 5-Aminopyrazole and Pyrazolo[1,5-a]Pyrimidine Derivatives. Sci. Pharm. 2015, 83, 27–39. DOI: 10.3797/scipharm.1409-14.
  • Li, Y.; Gao, W.; Li, F.; Wang, J.; Zhang, J.; Yang, Y.; Zhang, S.; Yang, L. An in Silico Exploration of the Interaction Mechanism of Pyrazolo[1,5-a]Pyrimidine Type CDK2 Inhibitors. Mol. Biosyst. 2013, 9, 2266–2281. DOI: 10.1039/C3MB70186G.
  • Yu, P. B.; Hong, C. C.; Sachidanandan, C.; Babitt, J. L.; Deng, D. Y.; Hoyng, S. A.; Lin, H. Y.; Bloch, K. D.; Peterson, R. T. Dorsomorphin Inhibits BMP Signals Required for Embryogenesis and Iron Metabolism. Nat. Chem. Biol. 2008, 4, 33–41. DOI: 10.1038/nchembio.2007.54.
  • Khalil, K. D.; Al-Matar, H. M.; Doa’a, M.; Elnagdi, M. H. Studies with Enaminones and Enaminonitriles: synthesis of 3-Aroyl and 3-Heteroaroyl-Pyrazolo[1,5-a]Pyrimidines. Tetrahedron. 2009, 65, 9421–9427. DOI: 10.1016/j.tet.2009.08.084.
  • Gommermann, N.; Buehlmayer, P.; Von Matt, A.; Breitenstein, W.; Masuya, K.; Pirard, B.; Furet, P.; Cowan-Jacob, S. W.; Weckbecker, G. New Pyrazolo[1,5-a]Pyrimidines as Orally Active Inhibitors of Lck. Bioorg. Med. Chem. Lett. 2010, 20, 3628–3631. DOI: 10.1016/j.bmcl.2010.04.112.
  • Metwally, N. H.; Koraa, T. H.; Sanad, S. M. H. Green One-Pot Synthesis and in Vitro Antibacterial Screening of Pyrano[2,3-c]Pyrazoles, 4H-Chromenes and Pyrazolo[1,5-a]Pyrimidines Using Biocatalyzed Pepsin. Synth. Commun. 2022, 52, 1139–1154. DOI: 10.1080/00397911.2022.2074301.
  • Hassan, A. S.; Masoud, D. M.; Sroor, F. M.; Askar, A. A. Synthesis and Biological Evaluation of Pyrazolo[1,5-a]Pyrimidine-3-Carboxamide as Antimicrobial Agents. Med. Chem. Res. 2017, 26, 2909–2919. DOI: 10.1007/s00044-017-1990-y.
  • Sadek, K. U.; Mekheimer, R. A.; Mohamed, T. M.; Moustafa, M. S.; Elnagdi, M. H. Regioselectivity in the Multicomponent Reaction of 5-Aminopyrazoles, Cyclic 1,3-Diketones and Dimethylformamide Dimethylacetal under Controlled Microwave Heating. Beilstein J. Org. Chem. 2012, 8, 18–24. DOI: 10.3762/bjoc.8.3.
  • Wu, Y. C.; Li, H. J.; Liu, L.; Wang, D.; Yang, H. Z.; Chen, Y. J. Efficient Construction of Pyrazolo[1,5-a]Pyrimidine Scaffold and Its Exploration as a New Heterocyclic Fluorescent Platform. J. Fluoresc. 2008, 18, 357–363. DOI: 10.1007/s10895-007-0275-0.
  • Dwyer, M. P.; Paruch, K.; Labroli, M.; Alvarez, C.; Keertikar, K. M.; Poker, C.; Rossman, R.; Fischmann, T. O.; Duca, J. S.; Madison, V.; et al. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based CHK1 Inhibitors: A Template-Based approach-Part 1. Bioorg. Med. Chem. Lett. 2011, 21, 467–470. DOI: 10.1016/j.bmcl.2010.10.113.
  • Sanad, S. M. H.; Mekky, A. E. M. 3-Aminopyrazolo[3,4-b]Pyridine: Effective Precursor for Barium Hydroxide-Mediated Three Components Synthesis of New Mono- and Bis(Pyrimidines) with Potential Cytotoxic Activity. Chem. Biodivers. 2022, 19, e202100500. DOI: 10.1002/cbdv.202100500.
  • Zhang, J.; Peng, J. F.; Wang, T.; Wang, P.; Zhang, Z. T. Synthesis, Crystal Structure, Characterization and Antifungal Activity of Pyrazolo[1,5-a]Pyrimidines Derivatives. J. Mol. Struct. 2016, 1120, 228–233. DOI: 10.1016/j.molstruc.2016.05.026.
  • John, T. J.; Dandona, L.; Sharma, V. P.; Kakkar, M. Continuing Challenge of Infectious Diseases in India. Lancet. 2011, 377, 252–269. DOI: 10.1016/S0140-6736(10)61265-2.
  • Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature. 2008, 451, 990–993. DOI: 10.1038/nature06536.
  • Nwobodo, D. C.; Ugwu, M. C.; Anie, C. O.; Al‐Ouqaili, M. T.; Ikem, J. C.; Victor Chigozie, U.; Saki, M. Antibiotic Resistance: The Challenges and Some Emerging Strategies for Tackling a Global Menace. J. Clin. Lab. Anal. 2022, 36, e24655. DOI: 10.1002/jcla.24655.
  • Cole, S. T. Who Will Develop New Antibacterial Agents? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014, 369, 20130430. DOI: 10.1098/rstb.2013.0430.
  • Barrett, C. T.; Barrett, J. F. Antibacterials: Are the New Entries Enough to Deal with the Emerging Resistance Problems? Curr. Opin. Biotechnol. 2003, 14, 621–626. DOI: 10.1016/j.copbio.2003.10.003.
  • Elneairy, M. A. A.; Sanad, S. M. H.; Mekky, A. E. M. One-Pot Synthesis and Antibacterial Screening of New (Nicotinonitrile-Thiazole)-Based Mono- and Bis(Schiff Bases) Linked to Arene Units. Synth. Commun. 2023, 53, 245–261. DOI: 10.1080/00397911.2022.2163506.
  • Sanad, S. M. H.; Mekky, A. E. M.; Said, A. Y.; Elneairy, M. A. A. New Thieno[2,3-b]Pyridine-Fused [1,2,4]Triazolo[4,3-a]Pyrimidinone Hybrids as Potential MRSA and VRE Inhibitors. Mendeleev. Commun. 2021, 31, 370–372. DOI: 10.1016/j.mencom.2021.04.029.
  • Mekky, A. E. M.; Sanad, S. M. H. [3 + 2] Cycloaddition Synthesis of New (Nicotinonitrile-Chromene)-Based Bis(Pyrazole) Hybrids as Potential Acetylcholinesterase Inhibitors. J. Heterocyclic. Chem. 2023, 60, 156–160. DOI: 10.1002/jhet.4590.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Pyridine-2(1H)-Thiones: Versatile Precursors for Novel Pyrazolo[3,4-b]Pyridine, Thieno[2,3-b]Pyridines and Their Fused Azines. J. Heterocyclic. Chem. 2019, 56, 1588–1597. DOI: 10.1002/jhet.3444.
  • Sanad, S. M. H.; Mekky, A. E. M. Enaminone Incorporating a Dibromobenzofuran Moiety: Versatile Precursor for Novel Azines and Azolotriazines. J. Heterocyclic. Chem. 2018, 55, 836–843. DOI: 10.1002/jhet.3107.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Efficient Synthesis and Characterization of Novel Pyrido[3',2':4,5]Thieno[3,2-d]Pyrimidines and Their Fused [1,2,4]Triazole Derivatives. J. Heterocyclic. Chem. 2018, 55, 2823–2833. DOI: 10.1002/jhet.3352.
  • Vaquero, J. J.; Fuentes, L.; Del Castillo, J. C.; Perez, M. I.; Garcia, J. L.; Soto, J. L. The Reactions of Benzylmalononitriles with Hydrazine and Hydroxylamine: Synthesis of Pyrazoles, Isoxazoles, and Pyrazolo[1,5-a]Pyrimidine Derivatives. Synthesis. 1987, 1987, 33–35. DOI: 10.1055/s-1987-27831.
  • Jedinák, L.; Kryštof, V.; Cankar, P. The Synthesis of Some Derivatives Based on the 4-Benzyl-1H-Pyrazole-3, 5-Diamine Core. Heterocycles. 2011, 83, 371. DOI: 10.1002/chin.201124115.
  • Kumar, N. R.; Poornachandra, Y.; Swaroop, D. K.; Dev, G. J.; Kumar, C. G.; Narsaiah, B. Synthesis of Novel Ethyl 2,4-Disubstituted 8-(Trifluoromethyl)Pyrido[2′,3′:3,4]Pyrazolo[1,5-a]Pyrimidine-9-Carboxylate Derivatives as Promising Anticancer Agents. Bioorg. Med. Chem. Lett. 2016, 26, 5203–5206. DOI: 10.1016/j.bmcl.2016.09.062.
  • Dawane, B. S.; Konda, S. G.; Zangade, S. B. Design, Synthesis, and Characterization of Some Novel Pyrazolo[1,5‐a]Pyrimidines as Potent Antimicrobial Agents. J. Heterocyclic. Chem. 2010, 47, 1250–1254. DOI: 10.1002/jhet.413.
  • Palaniraja, J.; Roopan, S. M.; Rayalu, G. M.; Al-Dhabi, N. A.; Arasu, M. V. A Metal-Free Regioselective Multicomponent Approach for the Synthesis of Free Radical Scavenging Pyrimido-Fused Indazoles and Their Fluorescence Studies. Molecules. 2016, 21, 1571. DOI: 10.3390/molecules21111571.
  • Sanad, S. M. H.; Ahmed, M. S. M.; Mekky, A. E. M.; Abdallah, Z. A. Regioselective Synthesis and Theoretical Calculations of Bis(Pyrido[2',3':3,4]Pyrazolo[1,5-a]Pyrimidines) Linked to Benzofuran Units via Piperazine Spacer: A DFT, MM2, and MMFF94 Study. J. Mol. Struct. 2021, 1243, 130802. DOI: 10.1016/j.molstruc.2021.130802.
  • Mekky, A. E. M.; Sanad, S. M. H. New Thiazole-Based Bis(Schiff Bases) Linked to Arene Units as Potential MRSA Inhibitors. Synth. Commun. 2022, 52, 2205–2218. DOI: 10.1080/00397911.2022.2134800.
  • Mekky, A. E. M.; Sanad, S. M. H.; Abdelfattah, A. M. Tandem Synthesis, Antibacterial Evaluation and SwissADME Prediction Study of New Bis(1,3,4-Oxadiazoles) Linked to Arene Units. Mendeleev. Commun. 2022, 32, 612–614. DOI: 10.1016/j.mencom.2022.09.014.
  • Mohammad, H.; Reddy, P. N.; Monteleone, D.; Mayhoub, A. S.; Cushman, M.; Seleem, M. N. Synthesis and Antibacterial Evaluation of a Novel Series of Synthetic Phenylthiazole Compounds against Methicillin-Resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2015, 94, 306–316. DOI: 10.1016/j.ejmech.2015.03.015.
  • Kamal, A.; Rahim, A.; Riyaz, S.; Poornachandra, Y.; Balakrishna, M.; Kumar, C. G.; Hussaini, S. M. A.; Sridhar, B.; Machiraju, P. K. Regioselective Synthesis, Antimicrobial Evaluation and Theoretical Studies of 2-Styryl Quinolines. Org. Biomol. Chem. 2015, 13, 1347–1357. DOI: 10.1039/c4ob02277g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.