Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 10
107
Views
1
CrossRef citations to date
0
Altmetric
Articles

Design, synthesis, characterization, and antimicrobial evaluation of the novel 2-heteroarylchromeno[2,3-d]pyrimidines

& ORCID Icon
Pages 744-754 | Received 21 Dec 2022, Published online: 30 Mar 2023

References

  • Ali, T. E.; Ibrahim, M. A. Synthesis and Antimicrobial Activity of Chromone-Linked 2-Pyridone Fused with 1,2,4-Triazoles, 1,2,4-Triazines and 1,2,4-Triazepines Ring Systems. J. Braz. Chem. Soc. 2010, 21, 1007–1016. DOI: 10.1590/S0103-50532010000600010.
  • Liu, Y.; Ding, L.; He, J.; Zhang, Z.; Deng, Y.; He, S.; Yan, X. A New Antibacterial Chromone from a Marine Sponge-Associated Fungus Aspergillus sp. LS57. Fitoterapia 2021, 154, 105004. DOI: 10.1016/j.fitote.2021.105004.
  • Prakash, O.; Kumar, R.; Parkash, V. Synthesis and Antifungal Activity of Some New 3-Hydroxy-2-(1-Phenyl-3-Aryl-4-Pyrazolyl)Chromones. Eur. J. Med. Chem. 2008, 43, 435–440. DOI: 10.1016/j.ejmech.2007.04.004.
  • Lerdsirisuk, P.; Maicheen, C.; Ungwitayatorn, J. Antimalarial Activity of HIV-1 Protease Inhibitor in Chromone Series. Bioorg. Chem. 2014, 57, 142–147. DOI: 10.1016/j.bioorg.2014.10.006.
  • Liu, F.-Z.; Wang, H.; Li, W.; Yang, L.; Yang, J.-L.; Yuan, J.-Z.; Wei, Y.-M.; Jiang, B.; Mei, W.-L.; Dai, H.-F. Filarones A and B, New anti-Inflammatory Dimeric 2-(2-Phenethyl)Chromones from Agarwood of Aquilaria filaria. Phytochem. Lett. 2021, 46, 11–14. DOI: 10.1016/j.phytol.2021.09.008.
  • Saito, Y.; Taniguchi, Y.; Hirazawa, S.; Miura, Y.; Tsurimoto, H.; Nakayoshi, T.; Oda, A.; Hamel, E.; Yamashita, K.; Goto, M.; Nakagawa-Goto, K. Effects of Substituent Pattern on the Intracellular Target of Antiproliferative Benzo[b]Thiophenyl Chromone Derivatives. Eur. J. Med. Chem. 2021, 222, 113578. DOI: 10.1016/j.ejmech.2021.113578.
  • Shanmugapriya, A.; Kalaiarasi, G.; Ravi, M.; Sparkes, H. A.; Kalaivani, P.; Prabhakaran, R. Palladium-Mediated C–O Bond Activation of Benzopyrone in 4-Oxo-4H-Chromone-3-Carbaldehyde-4(N)-Substituted Thiosemicarbazone: Synthesis, Structure, Nucleic Acid/Albumin Interaction, DNA Cleavage, Antioxidant and Cytotoxic Studies. New J. Chem. 2021, 45, 20227. DOI: 10.1039/D1NJ04076F.
  • Kantankar, A.; Rao, Y. J.; Mallikarjun, G.; Hemasri, Y.; Kethiri, R. R. Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies of Chromone-Pyrimidine Derivatives as Potent Anti-Cancer Agents. J. Mol. Struct. 2021, 1239, 130502. DOI: 10.1016/j.molstruc.2021.130502.
  • Zhou, T.; Shi, Q.; Chen, C.-H.; Zhu, H.; Huang, L.; Ho, P.; Lee, K.-H. Anti-AIDS Agents 79. Design, Synthesis, Molecular Modeling and Structure–Activity Relationships of Novel Dicamphanoyl-2′,2′-Dimethyldihydropyranochromone (DCP) Analogs as Potent Anti-HIV Agents. Bioorg. Med. Chem. 2010, 18, 6678–6689. DOI: 10.1016/j.bmc.2010.07.065.
  • Albrecht, U.; Lalk, M.; Langer, P. Synthesis and Structure–Activity Relationships of 2-Vinylchroman-4-Ones as Potent Antibiotic Agents. Bioorg. Med. Chem. 2005, 13, 1531–1536. DOI: 10.1016/j.bmc.2004.12.031.
  • Makhaeva, G. F.; Boltneva, N. P.; Lushchekina, S. V.; Rudakova, E. V.; Serebryakova, O. G.; Kulikova, L. N.; Beloglazkin, A. A.; Borisov, R. S.; Richardson, R. J. Synthesis, Molecular Docking, and Biological Activity of 2-Vinyl Chromones: Toward Selective Butyrylcholinesterase Inhibitors for Potential Alzheimer’s Disease Therapeutics. Bioorg. Med. Chem. 2018, 26, 4716– 4725. DOI: 10.1016/j.bmc.2018.08.010.
  • Ibrahim, M. A. Ring Transformation of Chromone-3-Carboxamide. Tetrahedron 2009, 65, 7687–7690. DOI: 10.1016/j.tet.2009.06.107.
  • Ibrahim, M. A. Studies on the Chemical Reactivity of 1H-Benzimidazol-2-Ylacetonitrile towards Some 3-Substituted Chromones: synthesis of Some Novel Pyrido[1,2-a]Benzimidazoles. Tetrahedron 2013, 69, 6861–6865. DOI: 10.1016/j.tet.2013.06.011.
  • Ibrahim, M. A. Ring Transformation of Chromone-3-Carboxamide under Nucleophilic Conditions. J. Braz. Chem. Soc. 2013, 24, 1754–1763. DOI: 10.5935/0103-5053.20130220.
  • Ibrahim, M. A.; Badran, A. Cascade Reactions between 2-Substituted-3-(4-Oxo-4H-Chromen-3-yl)Acrylonitriles with Benzylamine and p-Toluidine. Arkivoc 2018, 7, 214–224. DOI: 10.24820/ark.5550190.p010.745.
  • Ibrahim, M. A.; El-Kazak, A. M. Ring Opening and Recyclization Reactions with Chromone-3-Carbonitrile. J. Heterocycl. Chem. 2019, 56, 1075–1085. DOI: 10.1002/jhet.3495.
  • Ibrahim, M. A.; Badran, A.; Hashiem, S. H. Heteroannulated Coumarins and Chromones from Chemical Transformations of 6,8‐Dimethylchromone‐3‐Carbonitrile. J. Heterocycl. Chem. 2018, 55, 2844–2851. DOI: 10.1002/jhet.3354.
  • Sosnovskikh, V. Y.; Moshkin, V. S. Novel Data for the Reaction of 3-Cyano-(Thio)Chromones with N-Nucleophiles. Chem. Heterocycl. Compd. 2012, 48, 139–146.
  • Ibrahim, M. A.; Farag, A. A. M.; Roushdy, N.; El-Gohary, N. M. Synthesis and Photosensitivity Characterizations of 9-(6-Bromo-4-Oxo-4H-Chromen-3-yl)-3,4,6,7-Tetrahydro-3,3,6,6-Tetramethyl-2H-Xanthene-1,8-(5H,9H)-Dione (BOCTTX). J. Mol. Struct. 2016, 1105, 370–380. DOI: 10.1016/j.molstruc.2015.10.060.
  • Farag, A. A. M.; Roushdy, N.; Abdel Halim, S.; El-Gohary, N. M.; Ibrahim, M. A.; Said, S. Synthesis, Molecular, Electronic Structure, Linear and Non-Linear Optical and Phototransient Properties of 8-Methyl-1,2-Dihydro-4H-Chromeno[2,3-b]Quinoline-4,6(3H)-Dione (MDCQD): Experimental and DFT Investigations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 191, 478–490. DOI: 10.1016/j.saa.2017.10.014.
  • Tomer, N.; Malhotra, R. Schiff Base as a Fluorescent Sensor Derived from Chromone Moiety for the Effective Detection of Zn(II) Ions. J. Mol. Struct. 2022, 1252, 132124. DOI: 10.1016/j.molstruc.2021.132124.
  • Abozeid, M. A.; El-Kholany, M. R.; Abouzeid, L. A.; Abdel-Rahman, A. H.; El-Desoky, E. I. Synthesis and Computational Analysis of New Antioxidant and Antimicrobial Angular Chromenopyrimidines. J. Heterocycl. Chem. 2019, 56, 2922–2933. DOI: 10.1002/jhet.3686.
  • Bhosle, M. R.; Wahul, D. B.; Bondle, G. M.; Sarkate, A.; Tiwari, S. V. An Efficient Multicomponent Synthesis and In Vitro Anticancer Activity of Dihydropyranochromene and Chromenopyrimidine-2,5-Diones. Synth. Commun. 2018, 48, 2046–2060. DOI: 10.1080/00397911.2018.1480042.
  • Ibrahim, M. A. Synthesis and Characterization of the Novel Heteroannulated Chromeno[2,3-d]Pyrimidines and Chromeno[2,3-d][1,3]Thiazolo[3,2-a]Pyrimidines. J. Heterocycl. Chem. 2022, 59, 2076–2083. DOI: 10.1002/jhet.4542.
  • Sosnovskikh, V. Y.; Moshkin, V. S. Direct Synthesis of 3-(Diaminomethylidene) Chromane-2,4-Diones from 3-Formylchromones and Hydroxylamine. Russ. Chem. Bull. 2010, 59, 1056–1058. DOI: 10.1007/s11172-010-0205-1.
  • Ibrahim, M. A.; Ali, T. E.; El-Kazak, A. M.; Mohamed, A. M. Studies on the Chemical Reactivity of 6,8-Dibromo-7-Hydroxychromone-3-Carboxaldehyde towards Some Nitrogen Nucleophilic Reagents. J. Heterocycl. Chem. 2015, 52, 815–826. DOI: 10.1002/jhet.2195.
  • Ibrahim, M. A.; Badran, A.; El-Gohary, N. M.; Hashiem, S. H. Studies on the Chemical Reactions of Some 3-Substituted-6,8-Dimethylchromones with Nucleophilic Reagents. J. Heterocycl. Chem. 2018, 55, 2315–2324. DOI: 10.1002/jhet.3291.
  • Ibrahim, M. A.; Ali, T. E.; Gabr, Y. A.; Alnamer, Y. A. Synthesis and Chemical Reactivity of 2-Methylchromones. Arkivoc 2010, 1, 98–135. DOI: 10.3998/ark.5550190.0011.103.
  • Ibrahim, M. A.; Ali, T. E. Ring Opening and Ring Closure Reactions of Chromone-3-Carboxylic Acid: Unexpected Routes to Synthesize Functionalized Benzoxocinones and Heteroannulated Pyranochromenes. Turk. J. Chem. 2015, 39, 412–425. DOI: 10.3906/kim-1410-41.
  • Ibrahim, M. A.; El-Gohary, N. M. Domino Reactions between 3-(6-Methyl Chromonyl)Acrylonitrile and Nucleophilic Reagents. Tetrahedron 2018, 74, 512–518. DOI: 10.1016/j.tet.2017.12.030.
  • Ibrahim, M. A.; Abdel-Hamed, M. A.; El-Gohary, N. M. A New Approach for the Synthesis of Bioactive Heteroaryl Thiazolidine-2,4-Diones. J. Braz. Chem. Soc. 2011, 22, 1130–1139. DOI: 10.1590/S0103-50532011000600019.
  • Badran, A.; Ibrahim, M. A.; Ahmed, A. Nucleophilic Reactions with the Novel Condensation Product Derived from 3-Formylchromone and 4-Hydroxycoumarin. Synth. Commun. 2021, 51, 1868–1881. DOI: 10.1080/00397911.2021.1910961.
  • Gould, J. C.; Bowie, J. M. The Determination of Bacterial Sensitivity to Antibiotics. Edinb. Med. J. 1952, 59, 178–199.
  • Ibrahim, M. A.; Ali, T. E.; El‐Gohary, N. M.; El‐Kazak, A. M. 3‐Formyl Chromones as Diverse Building Blocks in Heterocycles Synthesis. Eur. J. Chem. 2013, 4, 311–328. DOI: 10.5155/eurjchem.4.3.311-328.815.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.