Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 11
213
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ammonium acetate mediated simple, rapid, and one-pot multicomponent synthesis of spirooxindole derivatives

& ORCID Icon
Pages 808-822 | Received 03 Jan 2023, Published online: 16 Apr 2023

References

  • Barthakur, M. G. Ammonium Acetate. Synlett 2007, 2007, 1475–1476. DOI: 10.1055/s-2007-980375.
  • Mhiri, C.; Boubakri, L.; Ternane, R.; Mansour, L.; Harrath, A. H.; Al‐Tamimi, J.; Baklouti, L.; Hamdi, N. Three‐Component, One‐Pot Synthesis of Pyrano[3,2-c]Chromene Derivatives Catalyzed by Ammonium Acetate: Synthesis, Characterization, Cation Binding, and Biological Determination. J. Heterocycl. Chem. 2020 57, 291–298.
  • Hu, L.; Zhan, Z.; Lei, M.; Hu, L. Facile and Green Method for the Synthesis of 4-Amino-1,2-Dihydrobenzo[4,5]Imidazo[1,2-a]Pyrimidine-3-Carbonitriles Catalysed by Ammonium Acetate. J. Chem. Res. 2012, 36, 738–739. DOI: 10.3184/174751912X13528011362074.
  • SawpathKumar, H. M.; Subbareddy, B. V.; Anjaneyulu, S.; Yadav, J. S. Non Solvent Reaction: Ammonium Acetate Catalyzed Highly Convenient Preparation of Trans-Cinnamic Acids. Synth. Commun. 1998, 28, 3811–3815. DOI: 10.1080/00397919808004934.
  • Ramachandran, G.; Sathiyanarayanan, K. I.; Sathishkumar, M.; Rathore, R. S.; Giridharan, P. Dual Behavior of Ammonium Acetate for the Synthesis of Diverse Symmetrical/Unsymmetrical Bis[1,3]Oxazines Possessing Anticancer Activity. Synth. Commun. 2015, 45, 2227–2239.
  • Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. A Mild and Efficient Procedure for α-Bromination of Ketones Using N-Bromo Succinimide Catalysed by Ammonium Acetate. Chem. Commun. 2004, 4, 470–471. DOI: 10.1039/B315340A.
  • Yao, C.; Feng, X.; Wang, C.; Jiang, B.; Yu, C.; Wang, X.; Li, T.; Tu, S. Solvent-Free Three-Component Synthesis of 7-Aryl-1,1-Dioxothieno[3,2-b]Pyran Derivatives Catalyzed by Ammonium Acetate. J. Heterocycl. Chem. 2011, 48, 1111–1116. DOI: 10.1002/jhet.696.
  • You, H.; Lei, M.; Hu, L. A Green and Efficient Ammonium Acetate-Catalyzed One-Pot Synthesis of 4-[(2hydroxynaphthalenyl) (Phenyl)Methyl]-3-Methyl-1H-Pyrazol-5-ol Derivatives. Monatsh. Chem. 2013, 144, 1839–1846. DOI: 10.1007/s00706-013-1056-x.
  • Tayebee, R.; Gohari, A. The Dual Role of Ammonium Acetate as Reagent and Catalyst in the Synthesis of 2,4,5-Triaryl-1H-Imidazoles. Eurasian Chem. Commun. 2020, 2, 581–586.
  • Mogilaiah, K.; Rani, J. U. Microwave-Assisted Solvent-Free Friedlander Synthesis of 1,8-Naphthyridines Using Ammonium Acetate as Catalyst. Indian J. Chem. B 2006, 45, 1051–1053.
  • Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. A Mild, Highly Selective and Remarkably Easy Procedure for Deprotection of Aromatic Acetates Using Ammonium Acetate as a Neutral Catalyst in Aqueous Medium. Tetrahedron 2003, 59, 1049–1054. DOI: 10.1016/S0040-4020(02)01635-6.
  • Myint, Y. Y.; Pasha, M. A. Regioselective Synthesis of α‐Iodoacetates from Alkenes/Ammonium Acetate/I2 by Woodward’s Reaction. Synth. Commun. 2004, 34, 4477–4482. DOI: 10.1081/SCC-200043180.
  • Cave, G. W. V.; Raston, C. L. Toward Benign Syntheses of Pyridines Involving Sequential Solvent Free Aldol and Michael Addition Reactions. Chem. Commun. 2000, 22, 2199–2200. DOI: 10.1039/b007431o.
  • Xia, J. J.; Wang, G. W. One-Pot Synthesis and Aromatization of 1,4-Dihydropyridines in Refluxing Water. Synthesis 2005, 14, 2379–2383. DOI: 10.1055/s-2005-870022.
  • Fan, X. S.; Li, Y. Z.; Zhang, X. Y.; Qu, G. R.; Wang, J. J.; Hu, X. Y. An Efficient and Green Synthesis of 1,4-Dihydropyridine Derivatives through Multi-Component Reaction in Ionic Liquid. Heteroatom. Chem. 2006, 17, 382–388. DOI: 10.1002/hc.20221.
  • Zhao, L.; Liang, F.; Bi, X.; Sun, S.; Liu, Q. Efficient Synthesis of Highly Functionalized Dihydropyrido[2,3-d]Pyrimidines by a Double Annulation Strategy from α-Alkenoyl-α-Carbamoyl Ketene-(S,S)-Acetals. J. Org. Chem. 2006, 71, 1094–1098. DOI: 10.1021/jo0522106.
  • Tajima, K.; Uchida, M.; Minami, K.; Osada, M.; Sue, K.; Toshiyuki, N.; Hattori, H.; Arai, K. Amination of n-Hexanol in Supercritical Water. Environ. Sci. Technol. 2005, 39, 9721–9724. DOI: 10.1021/es051308z.
  • Osyanin, V. A.; Osipov, D. V.; Semenova, I. A.; Korzhenko, K. S.; Lukashenko, A. V.; Demidov, O. P.; Klimochkin, Y. N. Eco-Friendly Synthesis of Fused Pteropodine via Ammonium Acetate-Mediated Formal Oxa-[3 + 3]Cycloaddition of 4H-Chromene-3-Carbaldehydes and Cyclic 1,3-Dicarbonyl Compounds. RSC Adv. 2020, 10, 34344–34354. DOI: 10.1039/d0ra06450e.
  • Patil, D. R.; Deshmukh, M. B.; Dalal, D. S. Ammonium Acetate Mediated Synthesis of 5-Substituted 1H-Tetrazoles. J. Iran. Chem. Soc. 2012, 9, 799–803. DOI: 10.1007/s13738-012-0080-9.
  • Domaradzki, M. E.; Long, Y.; She, Z.; Liu, X.; Zhang, G.; Chen, Y. Gold-Catalyzed Ammonium Acetate Assisted Cascade Cyclization of 2‑Alkynylarylketones. J. Org. Chem. 2015, 80, 11360–11368. DOI: 10.1021/acs.joc.5b01939.
  • Shu, P.; Niu, H.; Zhang, L.; Xu, H.; Yu, M.; Li, J.; Yang, X.; Fei, Y.; Liu, H.; Ju, Z.; Xu, Z. Regioselective Dechloroacetylations Mediated by Ammonium Acetate: Practical Syntheses of 2,3,4,6-Tetra-O-Chloroacetyl-Glycopyranoses and Cinnamoyl Glucose Esters. Chemistry Select 2020, 5, 6360–6364. DOI: 10.1002/slct.202001955.
  • Xia, S.; Zhang, H. Density Functional Theory Study of Selective Deacylation of Aromatic Acetate in the Presence of Aliphatic Acetate under Ammonium Acetate Mediated Conditions. J. Org. Chem. 2014, 79, 6135–6142. DOI: 10.1021/jo500855g.
  • Sahu, D. P.; Giri, S. K.; Varshney, V.; Kumar, S. Single-Pot Synthesis of Spiro-Annulated Dihydrofurans by Iodine–Ammonium Acetate–Mediated Reaction of Dimedone with Aldehydes. Synth. Commun. 2009, 39, 3406–3419. DOI: 10.1080/00397910902763938.
  • Zhang, X.-N.; Li, Y.-X.; Zhang, Z.-H. Nickel Chloride-Catalyzed One-Pot Three-Component Synthesis of Pyrazolophthalazinyl Spirooxindoles. Tetrahedron 2011, 67, 7426–7430. DOI: 10.1016/j.tet.2011.07.002.
  • (a) Galliford, C. V.; Martenson, J. S.; Stern, C.; Scheidt, K. A. A Highly Diastereoselective, Catalytic Three-Component Assembly Reaction for the Synthesis of Spiropyrrolidinyloxindoles. Chem. Commun. 2007, 6, 631–633. DOI: 10.1039/B609155E. (b) Kang, T.-H.; Matsumoto, K.; Tohda, M.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Pteropodine and Isopteropodine Positively Modulate the Function of Rat Muscarinic M1 and 5-HT2 Receptors Expressed in Xenopus Oocyte. Eur. J. Pharmacol. 2002, 444, 39–45. (c) Cui, C.-B.; Kakeya, H.; Osada, H. Novel Mammalian Cell Cycle Inhibitors, Spirotryproststins a and B, Produced by Aspergillus fumigatus, Which Inhibit Mammalian Cell Cycle at G2/M Phase. Tetrahedron 1996, 52, 12651–12666. (d) Leong, F. J.; Li, R.; Jain, J. P.; Lefèvre, G.; Magnusson, B.; Diagana, T. T.; Pertel, P. A First-in-Human Randomized, Double-Blind, Placebo-Controlled, Single- and Multiple-Ascending Oral Dose Study of Novel Antimalarial Spiroindolone KAE609 (Cipargamin) to Assess Its Safety, Tolerability, and Pharmacokinetics in Healthy Adult Volunteers. Antimicrob. Agents Chemother. 2014, 58, 6209–6214.
  • Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; et al. Structure-Based Design of Spiro-Oxindoles as Potent, Specific Small-Molecule Inhibitors of the MDM2-p53 Interaction. J. Med. Chem. 2006, 49, 3432–3435. DOI: 10.1021/jm051122a.
  • Prasanna, P.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. A Regio- and Stereoselective 1,3-Dipolar Cycloaddition for the Synthesis of Novel Spiro-Pyrrolothiazolyloxindoles and Their Antitubercular Evaluation. Eur. J. Med. Chem. 2010, 45, 5653–5661. DOI: 10.1016/j.ejmech.2010.09.019.
  • Yeung, B. K. S.; Zou, B.; Rottmann, M.; Lakshminarayana, S. B.; Ang, S. H.; Leong, S. Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; et al. Spirotetrahydro β-Carbolines (Spiroindolones): A New Class of Potent and Orally Efficacious Compounds for the Treatment of Malaria. J. Med. Chem. 2010, 53, 5155–5164. DOI: 10.1021/jm100410f.
  • Rueping, M.; Sugiono, E.; Merino, E. Asymmetric Organocatalysis: An Efficient Enantioselective Access to Benzopyranes and Chromenes. Chemistry 2008, 14, 6329–6332. DOI: 10.1002/chem.200800836.
  • Skommer, J.; Wlodkowic, D.; Matto, M.; Eray, M.; Pelkonen, J. HA14-1, a Small Molecule Bcl-2 Antagonist, Induces Apoptosis and Modulates Action of Selected Anticancer Drugs in Follicular Lymphoma B Cells. Leuk. Res. 2006, 30, 322–331. DOI: 10.1016/j.leukres.2005.08.022.
  • Kodama, O.; Ichikawa, H.; Akatsuka, T.; Santisopasri, V.; Kato, A.; Hayashi, Y. Isolation and Identification of an Antifungal Naphthopyran Derivative from Rhinacanthus nasutus. J. Nat. Prod. 1993, 56, 292–294. DOI: 10.1021/np50092a018.
  • Hussein, A. A.; Barberena, I.; Capson, T. L.; Kursar, T. A.; Coley, P. D.; Solis, P. N.; Gupta, M. P. New Cytotoxic Naphthopyrane Derivatives from Adenaria floribunda. J. Nat. Prod. 2004, 67, 451–453. DOI: 10.1021/np030223d.
  • Bucar, F.; Resch, M.; Bauer, R.; Burits, M.; Knauder, E.; Schubert-Zsilavecz, M. 5-Methylflavasperone and Rhamnetin from Guiera senegalensis and Their Antioxidative and 5-Lipoxygenase Inhibitory Activity. Pharmazie 1998, 53, 875–878.
  • Moradi, L.; Ataei, Z. Efficient and Green Pathway for One-Pot Synthesis of Spirooxindoles in the Presence of CuO Nanoparticles. Green Chem. Lett. Rev. 2017, 10, 380–386. DOI: 10.1080/17518253.2017.1390611.
  • Nagaraju, S.; Paplal, B.; Sathish, K.; Giri, S.; Kashinath, D. Synthesis of Functionalized Chromene and Spirochromenes Using L-Proline-Melamine as Highly Efficient and Recyclable Homogeneous Catalyst at Room Temperature. Tetrahedron Lett. 2017, 58, 4200–4204. DOI: 10.1016/j.tetlet.2017.09.060.
  • Ramesh, R.; Maheswari, S.; Malecki, J. G.; Lalitha, A. NaN3 Catalyzed Highly Convenient Access to Functionalized 4H-Chromenes: A Green One-Pot Approach for Diversity Amplification. Polycyclic Aromat. Compd. 2020, 40, 1581–1594. DOI: 10.1080/10406638.2018.1564678.
  • Dutta, A.; Rahman, N.; Khongriah, W.; Nongrum, R.; Joshi, S. R.; Nongkhlaw, R. L-Glutamine Supported on Core–Shell Silica Iron Oxide Nanoparticles: A Highly Efficient Organocatalyst for Synthesis of Spirooxoindoles. Chemistry Select 2019, 4, 1–11.
  • Moradi, L.; Ataei, Z.; Zahraei, Z. Convenient Synthesis of Spirooxindoles Using SnO2 Nanoparticles as Effective Reusable Catalyst at Room Temperature and Study of Their In Vitro Antimicrobial Activity. J. Iran. Chem. Soc. 2019, 16, 1273–1281. DOI: 10.1007/s13738-019-01598-2.
  • Wagh, Y. B.; Tayade, Y. A.; Padvi, S. A.; Patil, B. S.; Patil, N. B.; Dalal, D. S. A Cesium Fluoride Promoted Efficient and Rapid Multicomponent Synthesis of Functionalized 2-Amino-3-Cyano-4H-Pyran and Spirooxindole Derivatives. Chin. Chem. Lett. 2015, 26, 1273–1277. DOI: 10.1016/j.cclet.2015.06.014.
  • Hassani, H.; Zakerinasab, B.; Nozarie, A. Sulfonic Acid Supported on Fe2O3/VO2 Nanocatalyst: A Highly Efficient and Reusable Nanocatalyst for Synthesis of Spirooxindole Derivatives. Asain. J. Green Chem. 2018, 3, 59–69. DOI: 10.22631/ajgc.2017.101572.1032.
  • Ganesan, A.; Kothandapani, J.; Nanubolu, J. B.; Ganesan, S. S. Oleic Acid: A Benign Brønsted Acidic Catalyst for Densely Substituted Indole Derivatives Synthesis. RSC Adv. 2015, 5, 28597–28600. DOI: 10.1039/C5RA02906F.
  • Chandam, D. R.; Mulik, A. G.; Patil, D. R.; Deshmukh, M. B. Oxalic Acid Dihydrate: Proline as a New Recyclable Designer Solvent: A Sustainable, Green Avenue for the Synthesis of Spirooxindole. Res. Chem. Intermed. 2016, 42, 1411–1423. DOI: 10.1007/s11164-015-2093-3.
  • Padvi, S. A.; Tayade, Y. A.; Wagh, Y. B.; Dalal, D. S. [bmim]OH: An Efficient Catalyst for the Synthesis of Mono and Bis Spirooxindole Derivatives in Ethanol at Room Temperature. Chin. Chem. Lett. 2016, 27, 714–720. DOI: 10.1016/j.cclet.2016.01.016.
  • Satasia, S. P.; Kalaria, P. N.; Avalani, J. R.; Raval, D. K. An Efficient Approach for the Synthesis of Spirooxindole Derivatives Catalyzed by Novel Sulphated Choline Based Heteropolyanion at Room Temperature. Tetrahedron 2014, 70, 5763–5767. DOI: 10.1016/j.tet.2014.06.050.
  • Moqadam, Z. A.; Allahresani, A.; Hassani, H. An Efficiently and Quickly Synthesized NiO@g‑C3N4 Nanocomposite‑Catalyzed Green Synthesis of Spirooxindole Derivatives. Res. Chem. Intermed. 2020, 46, 299–311.
  • Allahresani, A.; Taheri, B.; Nasseri, M. A. A Green Synthesis of Spirooxindole Derivatives Catalyzed by SiO2@g-C3N4 Nanocomposite. Res. Chem. Intermed. 2018, 44, 1173–1188. DOI: 10.1007/s11164-017-3160-8.
  • Baghernejad, M.; Khodabakhshi, S.; Tajik, S. Isatin-Based Three-Component Synthesis of New Spirooxindoles Using Magnetic Nano-Sized Copper Ferrite. New J. Chem. 2016, 40, 2704–2709. DOI: 10.1039/C5NJ03027G.
  • Maheshwar Rao, B.; Niranjan Reddy, G.; Vijaikumar Reddy, T.; Prabhavathi Devi, B. L. A.; Prasad, R. B. N.; Yadav, J. S.; Subba Reddy, B. V. Carbon–SO3H: A Novel and Recyclable Solid Acid Catalyst for the Synthesis of Spiro[4H-Pyran-3,3′-Oxindoles]. Tetrahedron Lett. 2013, 54, 2466–2471. DOI: 10.1016/j.tetlet.2013.02.089.
  • Mobinikhaledi, A.; Foroughifar, N.; Bodaghi Fard, M. Simple and Efficient Method for Three-Component Synthesis of Spirooxindoles in Aqueous and Solvent-Free Media. Synth. Commun. 2011, 41, 441–450. DOI: 10.1080/00397911003587507.
  • Saluja, P.; Aggarwal, K.; Khurana, J. M. One-Pot Synthesis of Biologically Important Spiro-2-Amino-4H-Pyrans, Spiroacenaphthylenes, and Spirooxindoles Using DBU as a Green and Recyclable Catalyst in Aqueous Medium. Synth. Commun. 2013, 43, 3239–3246. DOI: 10.1080/00397911.2012.760130.
  • Syed Riyaz, A.; Dubey, N.; P, K. Triphenylphosphine Catalyzed, One-Pot, Multicomponent Synthesis of Spirooxindoles. LOC 2012, 9, 101–105. DOI: 10.2174/157017812800221771.
  • Mobinikhaledi, A.; Jabbarpour, M. A Facile Multicomponent Synthesis of Some Functionalized Chromenes and Spiroindole Derivatives Using DABCO as an Efficient Catalys. J. Chem. Soc. Pak. 2013, 35, 1211–1218.
  • (a) Ziarani, G. M.; Badiei, A.; Mousavi, S.; Lashgari, N.; Shahbazi, A. Application of Amino Functionalized SBA-15 Type Mesoporous Silica in One-Pot Synthesis of Spirooxindoles. Chin. J. Catal. 2012, 33, 1832–1839. DOI: 10.1016/S1872-2067(11)60456-7. (b) Abdelhamid, I. A. Synthesis of Novel Spiro Cyclic 2-Oxindole Derivatives of 6-Amino-4H-Pyridazine via [3 + 3] Atom Combination Utilizing Chitosan as a Catalyst. Synlett 2009, 2009, 625–627. (c) Abdelhamid, I. A.; Mohamed, M. H.; Abdelmoniem, A. M.; Ghozlan, S. A. S. DBU-Catalyzed, Facile and Efficient Method for Synthesis of Spirocyclic 2-Oxindole Derivatives with Incorporated 6-Amino-4H-Pyridazines and Fused Derivatives via [3 + 3] Atom Combination. Tetrahedron 2009, 65, 10069–10073. doi:10.1016/J.TET.2009.09.081.
  • Faroughi Niya, H.; Hazeri, N.; Fatahpour, M. Synthesis, Characterization, and Application of CoFe2O4@Amino-2-Naphthol-4-Sulfonic Acid as a Novel and Reusable Catalyst for the Synthesis of Spirochromene Derivatives. Appl. Organomet. Chem. 2021, 35, e6119.
  • Oudi, M.; Tazeh, K. S.; Hazeri, N.; Fatahpour, M.; Ahmadi, R. A Convenient Route toward One-Pot Multicomponent Synthesis of Spirochromenes and Pyranopyrazoles Accelerated via Quinolinic Acid. J. Chin. Chem. Soc. 2019, 66, 1721–1728. DOI: 10.1002/jccs.201800470.
  • Mohammadian, N.; Akhlaghinia, B. Magnetic Calcined Oyster Shell Functionalized with Taurine Immobilized on β‑Cyclodextrin (Fe3O4/COS@β‑CD‑SO3H NPs) as Green and Magnetically Reusable Nanocatalyst for Efficient and Rapid Synthesis of Spirooxindoles. Res. Chem. Intermed. 2019, 45, 4737–4756. DOI: 10.1007/s11164-019-03860-x.
  • Zamani‑Ranjbar‑Garmroodi, B.; Nasseri, M. A.; Allahresani, A.; Hemmat, K. Application of Immobilized Sulfonic Acid on the Cobalt Ferrite Magnetic Nanocatalyst (CoFe2O4@SiO2@SO3H) in the Synthesis of Spirooxindoles. Res. Chem. Intermed. 2019, 45, 5665–5680. DOI: 10.1007/s11164-019-03928-8.
  • Hemmat, K.; Nasseri, M. A.; Allahresani, A.; Ghiami, S. CoFe2O4@SiO2: A Magnetically Recyclable Heterogeneous Catalyst for the Synthesis of Spirooxindole Derivatives. J. Organomet. Chem. 2019, 903, 120996. DOI: 10.1016/j.jorganchem.2019.120996.
  • Wu, C.; Shen, R.; Chen, J.; Hu, C. An Efficient Method for Multicomponent Synthesis of Spiro[4H-Pyran-Oxindole] Derivatives Catalyzed by Magnesium Perchlorate. Bull. Korean Chem. Soc. 2013, 34, 2431–2435. DOI: 10.5012/bkcs.2013.34.8.2431.
  • Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient One-Pot Synthesis of Spirooxindole Derivatives Catalyzed by L-Proline in Aqueous Medium. J. Comb. Chem. 2010, 12, 231–237. DOI: 10.1021/cc9001185.
  • Hojati, S. F.; Kaheh, A. S.; Moosavifar, M.; Daghestani, F. The Application of Encapsulated Trinuclear Cobalt Cluster Complex in Y Zeolite in the One-Pot Multi-Component Synthesis of Spiro Indoline Derivatives. J. Clust. Sci. 2022, 33, 1387–1397. DOI: 10.1007/s10876-021-02063-y.
  • Jamatia, R.; Gupta, A.; Pal, A. Nano-FGT: A Green and Sustainable Catalyst for the Synthesis of Spirooxindoles in Aqueous Medium. RSC Adv. 2016, 6, 20994–21000. DOI: 10.1039/C5RA27552K.
  • Jazinizadeh, T.; Maghsoodlou, M. T.; Heydari, R.; Yazdani‑Elah‑Abadi, A. Na2EDTA: An Efficient, Green and Reusable Catalyst for the Synthesis of Biologically Important Spirooxindoles, Spiroacenaphthylenes and Spiro‑2‑Amino‑4H‑Pyrans under Solvent‑Free Conditions. J. Iran. Chem. Soc. 2017, 14, 2117–2125. DOI: 10.1007/s13738-017-1148-3.
  • Karmakar, B.; Nayak, A.; Banerji, J. A Clean and Expedient Synthesis of Spirooxindoles in Aqueous Media Catalyzed over Nanocrystalline MgO. Tetrahedron Lett. 2012, 53, 5004–5007. DOI: 10.1016/j.tetlet.2012.07.030.
  • Kidwai, M.; Jahan, A.; Mishra, N. Gold(III) Chloride (HAuCl4·3H2O) in PEG: A New and Efficient Catalytic System for the Synthesis of Functionalized Spirochromenes. Appl. Catal. A Gen. 2012, 35–43, 425–426.
  • Litvinov, Y. M.; Mortikov, V. Y.; Shestopalov, A. M. Versatile Three-Component Procedure for Combinatorial Synthesis of 2-Aminospiro[(3′H)-Indol-3′,4-(4H)-Pyrans]. J. Comb. Chem. 2008, 10, 741–745. DOI: 10.1021/cc800093q.
  • Oskooie, H. A.; Heravi, M. M.; Karimi, N.; Hamidi, H. KAl(SO4)2·12H2O as a Recyclable Lewis Acid Catalyst for Synthesis of Spiro Oxindoles in Aqueous Media. Synth. Commun. 2011, 41, 3344–3350. DOI: 10.1080/00397911.2010.517895.
  • Wang, L.-M.; Jiao, N.; Qiu, J.; Yu, J.-J.; Liu, J.-Q.; Guo, F.-L.; Liu, Y. Sodium Stearate-Catalyzed Multicomponent Reactions for Efficient Synthesis of Spirooxindoles in Aqueous Micellar Media. Tetrahedron 2010, 66, 339–343. DOI: 10.1016/j.tet.2009.10.091.
  • Wang, G.-D.; Zhang, X.-N.; Zhang, Z.-H. One-Pot Three-Component Synthesis of Spirooxindole Catalyzed by Hexamethylenetetramine in Water. J. Hetercycl. Chem. 2013, 50, 61–65. DOI: 10.1002/jhet.994.
  • Xu, F.; Wang, Y.; He, F.; Li, Z.; Guo, S.; Xie, Y.; Luo, D.; Wu, J. Facile Construction of Spiroindoline Derivatives as Potential anti-Viral Agent via Three-Component Reaction in Aqueous with β-Cyclodextrin-SO3H as an Efficient Catalyst. Green Chem. Lett. Rev. 2022, 15, 139–152. DOI: 10.1080/17518253.2021.2023660.
  • Shanthi, G.; Subbulakshmi, G.; Perumal, P. T. A New InCl3-Catalyzed, Facile and Efficient Method for the Synthesis of Spirooxindoles under Conventional and Solvent-Free Microwave Conditions. Tetrahedron 2007, 63, 2057–2063. DOI: 10.1016/j.tet.2006.12.042.
  • Naeimi, H.; Lahouti, S. Sulfonated Chitosan Encapsulated Magnetically Fe3O4 Nanoparticles as Effective and Reusable Catalyst for Ultrasound-Promoted Rapid, Three-Component Synthesis of Spiro-4H-Pyrans. J. Iran. Chem. Soc. 2018, 15, 2017–2031. DOI: 10.1007/s13738-018-1399-7.
  • Dandia, A.; Parewa, V.; Jain, A.; Rathore, K. S. Step-Economic, Efficient, ZnS Nanoparticle-Catalyzed Synthesis of Spirooxindole Derivatives in Aqueous Medium via Knoevenagel Condensation Followed by Michael Addition. Green Chem. 2011, 13, 2135. DOI: 10.1039/c1gc15244k.
  • Karimi, A. R.; Sourinia, M.; Dalirnasab, Z.; Karimi, M. Silica Sulfuric Acid Magnetic Nanoparticle: An Efficient and Eco-Friendly Catalyst for Synthesis of Spiro[2-Amino-4H-Pyran-Oxindole]. Can. J. Chem. 2015, 93, 546–549. DOI: 10.1139/cjc-2014-0345.
  • Karimi, A. R.; Abadi, R. D.; Dalirnasab, Z. Synthesis of Mono- and Bis-Spiro-2-Amino-4H-Pyrans Catalyzed by S-Alkyl O-Hydrogen Sulfothioate Functionalized Silica-Coated Magnetic Nanoparticles under Ultrasound Irradiation. Res. Chem. Intermed. 2015, 41, 7427–7435. DOI: 10.1007/s11164-014-1834-z.
  • Safaei, H. R.; Shekouhy, M.; Shirinfeshan, A.; Rahmanpur, S. CaCl2 as a Bifunctional Reusable Catalyst: Diversity-Oriented Synthesis of 4H-Pyran Library under Ultrasonic Irradiation. Mol. Divers. 2012, 16, 669–683. DOI: 10.1007/s11030-012-9392-z.
  • Zhao, L.; Zhou, B.; Li, Y. An Efficient One-Pot Three-Component Reaction for Synthesis of Spirooxindole Derivatives in Water Media under Catalyst-Free Condition. Heteroatom. Chem. 2011, 22, 673–677. DOI: 10.1002/hc.20723.
  • Zhang, M.; Fu, Q.-Y.; Gao, G.; He, H.-Y.; Zhang, Y.; Wu, Y.-S.; Zhang, Z.-H. Catalyst-Free, Visible-Light Promoted One-Pot Synthesis of Spirooxindole-Pyran Derivatives in Aqueous Ethyl Lactate. ACS Sustain. Chem. Eng. 2017, 5, 6175–6182. DOI: 10.1021/acssuschemeng.7b01102.
  • Srivastava, M.; Rai, P.; Singh, J.; Singh, J. bmim(OH)/Chitosan/C2H5OH Synergy: Grinding Induced, a New Route for the Synthesis of Spirooxindole and Its Derivatives. RSC Adv. 2014, 4, 30592. DOI: 10.1039/C4RA03483J.
  • Bajpai, S.; Singh, S.; Srivastava, V. Monoclinic Zirconia Nanoparticle-Catalyzed Regioselective Synthesis of Some Novel Substituted Spirooxindole through One-Pot Multicomponent Reaction in a Ball Mill: A Step toward Green and Sustainable Chemistry. Synth. Commun. 2017, 47, 1514–1525. DOI: 10.1080/00397911.2017.1336244.
  • Chai, S.-J.; Lai, Y.-F.; Xu, J.-C.; Zheng, H.; Zhu, Q.; Zhang, P.-F. One-Pot Synthesis of Spirooxindole Derivatives Catalyzed by Lipase in the Presence of Water. Adv. Synth. Catal. 2011, 353, 371–375. DOI: 10.1002/adsc.201000523.
  • Taheri, M.; Mirza, B.; Zeeb, M. Electrosynthesis of Nano‑Sized Pyran and Chromene Derivatives by One‑Pot Reaction between Cyclic‑1,3‑Diketons, Malononitrile/Ethyl Cyanoacetate, and Isatin. J. Nanostruct. Chem. 2018, 8, 421–429. DOI: 10.1007/s40097-018-0282-5.
  • Pogosyan, S. A.; Pogosyan, M. V.; Harutyunyan, A. A. Synthesis of Novel Spiro[Chromene-4,3′-Indolines] and Spiro(Indoline-3,4′-Pyrano[3,2-h]Quinolines). Russ. J. Org. Chem. 2020, 56, 213–217. DOI: 10.1134/S1070428020020062.
  • Shmidt, M. S.; Reverdito, A. M.; Kremenchuzky, L.; Perillo, I. A.; Blanco, M. M. Simple and Efficient Microwave Assisted N-Alkylation of Isatin. Molecules 2008, 13, 831–840. DOI: 10.3390/molecules13040831.
  • Ghozlan, S. A. S.; Ramadan, M. A.; Abdelmoniem, A. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Bis(Indoline-2,3-Diones): Versatile Precursors for Novel Bis(Spirooxindoles) Incorporating 4H-Chromene-3-Carbonitrile and Pyrano[2,3-d]Pyrimidine-6-Carbonitrile Derivatives. Turk. J. Chem. 2017, 41, 410–419. DOI: 10.3906/kim-1609-42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.