Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 12
326
Views
3
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Cyanuric chloride promoted various organic transformations

ORCID Icon, , , , &
Pages 855-882 | Received 15 Mar 2023, Published online: 18 Apr 2023

References

  • Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Mandelic Acid Catalyzed One-Pot Three-Component Synthesis of α-Aminonitriles and α-Aminophosphonates under Solvent-Free Conditions at Room Temperature. Synth. Commun. 2020, 50, 1545–1560. DOI: 10.1080/00397911.2020.1745844.
  • Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic Acid: An Efficient Brønsted Acid-Surfactant-Combined Catalyst to Carry out Diverse Organic Transformations in Aqueous Medium. ChemistrySelect 2018, 3, 12918–12936. DOI: 10.1002/slct.201802824.
  • Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): An Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Curr. Green Chem. 2018, 5, 150–167. DOI: 10.2174/2213346105666181001113413.
  • Banerjee, B. Recent Developments on Organo-Bicyclo-Bases Catalyzed Multicomponent Synthesis of Biologically Relevant Heterocycles. Curr. Org. Chem. 2018, 22, 208–233. DOI: 10.2174/1385272821666170703123129.
  • Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V. K.; Banerjee, B. Naturally Occurring Organic Acid-Catalyzed Facile Diastereoselective Synthesis of Biologically Active (E)-3-(Arylimino)Indolin-2-One Derivatives in Water at Room Temperature. Curr. Org. Chem.. 2019, 23, 1778–1788. DOI: 10.2174/1385272822666190924182538.
  • Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic Applications of Saccharin and Its Derivatives in Organic Synthesis. Curr. Org. Chem.. 2020, 23, 3191–3205. DOI: 10.2174/1385272823666191121144758.
  • Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V. K.; Banerjee, B. Mandelic Acid: An Efficient Organo-Catalyst for the Synthesis of 3-Substituted-3- Hydroxy-Indolin-2-Ones and Related Derivatives in Aqueous Ethanol at Room Temperature. Curr. Organocatal. 2021, 8, 147–159. DOI: 10.2174/2213337207999200713145440.
  • Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Camphor Sulfonic Acid Catalyzed Facile and General Method for the Synthesis of 3,3′-(Arylmethylene)Bis(4-Hydroxy-2H-Chromen-2-Ones), 3,3′-(Arylmethylene)Bis(2-Hydroxynaphthalene-1,4-Diones) and 3,3′-(2-Oxoindoline-3,3-Diyl)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives at Room Temperature. Synth. Commun. 2021, 51, 1045–1057. DOI: 10.1080/00397911.2020.1856877.
  • Kaur, G.; Singh, A.; Kaur, N.; Banerjee, B. A General Method for the Synthesis of Structurally Diverse Quinoxalines and Pyrido-Pyrazine Derivatives Using Camphor Sulfonic Acid as an Efficient Organo-Catalyst at Room Temperature. Synth. Commun. 2021, 51, 1121–1131. DOI: 10.1080/00397911.2021.1873383.
  • Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V. K.; Banerjee, B. Camphor Sulfonic Acid Catalyzed a Simple, Facile, and General Method for the Synthesis of 2-Arylbenzothiazoles, 2-Arylbenzimidazoles, and 3H-Spiro[Benzo[d]Thiazole-2,3′-Indolin]-2′-Ones at Room Temperature. Synth. Commun. 2021, 51, 1100–1120. DOI: 10.1080/00397911.2020.1870043.
  • Banerjee, B.; Kaur, G.; Kaur, N. p-Sulfonic Acid Calix[n]Arene Catalyzed Synthesis of Bioactive Heterocycles: A Review. Curr. Org. Chem. 2021, 25, 209–222. DOI: 10.2174/1385272824999201019162655.
  • Banerjee, B.; Priya, A.; Sharma, A.; Kaur, G.; Kaur, M. Sulfonated β-Cyclodextrins: Efficient Supramolecular Organocatalysts for Diverse Organic Transformations. Phys. Sci. Rev. 2021, 7, 301–323.
  • Banerjee, B.; Singh, A.; Kaur, G. Baker’s Yeast (Saccharomyces Cerevisiae) Catalyzed Synthesis of Bioactive Heterocycles and Some Stereoselective Reactions. Phys. Sci. Rev. 2022, 7, 539–565.
  • Jagtap, R. M.; Shaikh, S. R.; Gonnade, R. G.; Raheem, S.; Rizvi, M. A.; Pardeshi, S. K. Cyanuric-Chloride-Mediated Synthesis of 2-Aryl-3-Tert-Butoxycarbonyl-Thiazolidine-4-Carboxylic Acid Anilides: Mechanistic, X-Ray Crystal Structures and Cytotoxicity Studies. ChemistrySelect 2019, 4, 12534–12546. DOI: 10.1002/slct.201903000.
  • Venkataraman, K.; Wagle, D. R. Cyanuric Chloride: A Useful Reagent for Converting Carboxylic Acids into Chlorides, Esters, Amides and Peptides. Tetrahedron Lett. 1979, 20, 3037–3040. DOI: 10.1016/S0040-4039(00)71006-9.
  • Venkataraman, K.; Wagle, D. R.; Cyanuric Chloride, A. Useful Reagent for Macrocyclic Lactonization. Tetrahedron Lett. 1980, 21, 1893–1896. DOI: 10.1016/S0040-4039(00)92809-0.
  • Falorni, M.; Porcheddu, A.; Taddei, M. Mild Reduction of Carboxylic Acids to Alcohols Using Cyanuric Chloride and Sodium Borohydride. Tetrahedron Lett. 1999, 40, 4395–4396. DOI: 10.1016/S0040-4039(99)00734-0.
  • Manhas, M. S.; Bose, A. K.; Khajavi, M. S. Cyanuric Chloride: A Mild Reagent for Beta-Lactam Synthesis. Synthesis 1981, 1981, 209–211. DOI: 10.1055/s-1981-29387.
  • Forbes, D. C.; Barrett, E. J.; Lewis, D. L.; Smith, M. C. A New and Efficient Route toward the Preparation of Diazo Ketones Using Cyanuric Chloride and Diazomethane. Tetrahedron Lett. 2000, 41, 9943–9947. DOI: 10.1016/S0040-4039(00)01791-3.
  • De Luca, L.; Giacomelli, G.; Porcheddu, A. An Efficient Route to Alkyl Chlorides from Alcohols Using the Complex TCT/DMF. Org. Lett. 2002, 4, 553–555. DOI: 10.1021/ol017168p.
  • Olah, G. A.; Fung, A. P.; Gupta, B. G. B.; Narang, S. C. Synthetic Methods and Reactions; 801. Deoxygenation of Sulfoxides with Cyanuric Chloride and Fluoride. Synthesis 1980, 1980, 221–221. DOI: 10.1055/s-1980-28973.
  • De Luca, L.; Giacomelli, G.; Porcheddu, A. A Mild and Efficient Alternative to the Classical Swern Oxidation. J. Org. Chem. 2001, 66, 7907–7909. DOI: 10.1021/jo015935s.
  • Bigdeli, M. A.; Mahdavinia, G. H.; Jafari, S.; Hazarkhani, H. Wet 2,4,6-Trichloro[1,3,5]Triazine (TCT) an Efficient Catalyst for Synthesis of α-α′-Bis(substituted-Benzylidene) Cycloalkanones under Solvent-Free Conditions. Catal. Commun. 2007, 8, 2229–2231. DOI: 10.1016/j.catcom.2007.05.010.
  • Bigdeli, M. A.; Heravi, M. M.; Mahdavinia, G. H. Wet Cyanuric Chloride Catalyzed Simple and Efficient Synthesis of 14-Aryl or Alkyl-14-H-Dibenzo[a,j]Xanthenes. Catal. Commun. 2007, 8, 1595–1598. DOI: 10.1016/j.catcom.2007.01.007.
  • Zhang, Z. H.; Zhang, P.; Yang, S. H.; Wang, H. J.; Deng, J. Multicomponent, Solvent-Free Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]-Xanthen-11-One Derivatives Catalysed by Cyanuric Chloride. J. Chem. Sci. 2010, 122, 427–432. DOI: 10.1007/s12039-010-0049-0.
  • Zhang, Z. H.; Tao, X. Y. 2,4,6-Trichloro-1,3,5-triazine-Promoted Synthesis of 1,8-Dioxo-Octahydroxanthenes under Solvent-Free Conditions. Aust. J. Chem. 2008, 61, 77–79. DOI: 10.1071/CH07274.
  • Zhang, P.; Yu, Y. D.; Zhang, Z. H. 2,4,6-Trichloro-1,3,5-Triazine as an Efficient Catalyst for Synthesis of Benzopyran Derivatives under Solvent-Free Conditions. Synth. Commun. 2008, 38, 4474–4479. DOI: 10.1080/00397910802369604.
  • Kuo, C. W.; Wang, C. C.; Kavala, V.; Yao, C. F. Efficient TCT-Catalyzed Synthesis of 1,5-Benzodiazepine Derivatives under Mild Conditions. Molecules 2008, 13, 2313–2325. DOI: 10.3390/molecules13092313.
  • Khodaei, M. M.; Bahrami, K.; Nazarian, Z. TCT as a Rapid and Efficient Catalyst for the Synthesis of 1,5-Benzodiazepines. Bull. Korean Chem. Soc. 2008, 29, 1280–1282.
  • Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P. M. S. Cyanuric Chloride Catalyzed Mild Protocol for Synthesis of Biologically Active Dihydro/Spiro Quinazolinones and Quinazolinone-Glycoconjugates. J. Org. Chem. 2012, 77, 929–937. DOI: 10.1021/jo2020856.
  • Sharma, A.; Singh, M.; Rai, N. N.; Sawant, D. Mild and Efficient Cyanuric Chloride Catalyzed Pictet–Spengler Reaction. Beilstein J. Org. Chem. 2013, 9, 1235–1242. DOI: 10.3762/bjoc.9.140.
  • Butler, R. N.; Katritzky, A. R.; Rees, A. C. W.; Scriven, E. F. V., Eds. Comprehensive Heterocyclic Chemistry; Pergamon: Oxford, 1984; Vol. 5, pp 791.
  • Herr, R. 5-Substituted-1H-Tetrazoles as Carboxylic Acid Isosteres: Medicinal Chemistry and Synthetic Methods. Bioorg. Med. Chem. 2002, 10, 3379–3393. DOI: 10.1016/s0968-0896(02)00239-0.
  • Wittenberger, S. Recent Developments in Tetrazole Chemistry. A Review. J. Org. Prep. Proced. Int. 1994, 26, 499–531. DOI: 10.1080/00304949409458050.
  • Andrus, A.; Partridge, B.; Heck, J. V.; Christensen, B. G. The Synthesis of N-(Tetrazol-5-yl)Azetidin-2-Ones. Tetrahedron Lett. 1984, 25, 911–914. DOI: 10.1016/S0040-4039(01)80060-5.
  • Castro, J. L.; Ball, R. G.; Broughton, H. B.; Russell, M. G.; Rathbone, D.; Watt, A. P.; Baker, R.; Chapman, K. L.; Fletcher, A. E.; Patel, S.; et al. Controlled Modification of Acidity in Cholecystokinin B Receptor Antagonists: N-(1,4-Benzodiazepin-3-yl)-N′-[3-(Tetrazol-5-Ylamino) Phenyl]Ureas. J. Med. Chem. 1996, 39, 842–849. DOI: 10.1021/jm9506736.
  • Peet, N. P.; Baugh, L. E.; Sunder, S.; Lewis, J. E.; Matthews, E. H.; Olberding, E. L.; Shah, D. N. 3-(1H-Tetrazol-5-yl)-4(3H)-Quinazolinone Sodium Salt (MDL 427): A New Antiallergic Agent. J. Med. Chem. 1986, 29, 2403–2409. DOI: 10.1021/jm00161a045.
  • Wexler, R. R.; Greenlee, W. J.; Irvin, J. D.; Goldberg, M. R.; Prendergast, K.; Smith, R. D.; Timmermans, P. B. M. W. M. Nonpeptide Angiotensin II Receptor Antagonists: The Next Generation in Antihypertensive Therapy. J. Med. Chem. 1996, 39, 625–656. DOI: 10.1021/jm9504722.
  • Sivaguru, P.; Theerthagiri, P.; Lalitha, A. Metal Free Organic Transformation: Cyanuric Chloride Catalyzed Synthesis of 5-Substituted-1H-Tetrazoles. Tetrahedron Lett. 2015, 56, 2203–2206. DOI: 10.1016/j.tetlet.2015.03.032.
  • Ravindernath, A.; Reddy, M. S. Synthesis and Evaluation of Anti-Inflammatory, Antioxidant and Antimicrobial Activities of Densely Functionalized Novel Benzo[d]Imidazolyl Tetrahydropyridine Carboxylates. Arab. J. Chem. 2017, 10, S1172–S1179. DOI: 10.1016/j.arabjc.2013.02.011.
  • Brahmachari, G.; Choo, C.; Ambure, P.; Roy, K. In Vitro Evaluation and In Silico Screening of Synthetic Acetylcholinesterase Inhibitors Bearing Functionalized Piperidine Pharmacophores. Bioorg. Med. Chem. 2015, 23, 4567–4575. DOI: 10.1016/j.bmc.2015.06.005.
  • Das, S.; da Silva, C. J.; Silva, M. d M.; Dantas, M. D. de A.; de Fátima, Â.; Ruiz, A. L. T. G.; da Silva, C. M.; de Carvalho, J. E.; Santos, J. C. C.; Figueiredo.; et al. Highly Functionalized Piperidines: Free Radical Scavenging, Anticancer Activity, DNA Interaction and Correlation with Biological Activity. J. Adv. Res. 2018, 9, 51–61. DOI: 10.1016/j.jare.2017.10.010.
  • Aeluri, R.; Alla, M.; Bommena, V. R.; Murthy, R.; Jain, N. Synthesis and Antiproliferative Activity of Polysubstituted Tetrahydropyridine and Piperidin-4-One-3-Carboxylate Derivatives. Asian J. Org. Chem. 2012, 1, 71–79. DOI: 10.1002/ajoc.201200010.
  • Naicker, L.; Venugopala, Narayanaswamy, K.; Shode, F.; Odhav, B. Antimicrobial and Antioxidant Activities of Piperidine Derivatives. Afr. J. Pharm. Pharmacol. 2015, 9, 783–792. DOI: 10.5897/AJPP2015.4335.
  • Misra, M.; Pandey, S. K.; Pandey, V. P.; Pandey, J.; Tripathi, R.; Tripathi, R. P. Organocatalyzed Highly Atom Economic One Pot Synthesis of Tetrahydropyridines as Antimalarials. Bioorg. Med. Chem. 2009, 17, 625–633. DOI: 10.1016/j.bmc.2008.11.062.
  • Kaur, G.; Devi, M.; Kumari, A.; Devi, R.; Banerjee, B. One-Pot Pseudo Five Component Synthesis of Biologically Relevant 1,2,6-Triaryl-4-Arylamino-Piperidine-3-Ene-3-Carboxylates: A Decade Update. ChemistrySelect 2018, 3, 9892–9910. DOI: 10.1002/slct.201801887.
  • Ramesh, R.; Maheswari, S.; Arivazhagan, M.; Malecki, J. G.; Lalitha, A. Cyanuric Chloride Catalyzed Metal-Free Mild Protocol for the Synthesis of Highly Functionalized Tetrahydropyridines. Tetrahedron Lett. 2017, 58, 3905–3909. DOI: 10.1016/j.tetlet.2017.08.074.
  • Kulkarni, M. S.; Mamgain, R.; Saravate, K.; Nagarkar, R. R. One Pot Solvent Free Synthesis of 2,4,5-Trisubstituted Imidazoles Using Wet Cyanuric Chloride. Pharma. Innov. J. 2018, 7, 153–155.
  • Hote, B. S.; Mandawad, G. G.; Patil, S. G.; Hallale, S. N. Cyanuric Chloride Catalyzed Three Component, One Pot Synthesis of Biginelli-Type Pyrimidinone Derivatives. Polycycl. Aromat. Compd. 2021, 41, 929–935. DOI: 10.1080/10406638.2019.1630653.
  • Maleki, B.; Azarifar, D.; Veisi, H.; Hojati, S. F.; Salehabadi, H.; Yami, R. N. Wet 2,4,6-Trichloro-1,3,5-Triazine (TCT) as an Efficient Catalyst for the Synthesis of 2,4,6-Triarylpyridines under Solvent-Free Conditions. Chin. Chem. Lett. 2010, 21, 1346–1349. DOI: 10.1016/j.cclet.2010.06.028.
  • Bandgar, B. P.; Joshi, N. S.; Kamble, V. T. 2,4,6-Trichloro-1,3,5-Triazine Catalyzed Synthesis of Thiiranes from Oxiranes under Solvent-Free and Mild Conditions. Tetrahedron Lett. 2006, 47, 4775–4777. DOI: 10.1016/j.tetlet.2006.03.171.
  • Li, W. L.; Luo, Q. Y.; Yan, F. L. Cyanuric Chloride-Catalyzed Synthesis of 10-Aryl-6,8-Dimethyl-6,10-Dihydro-5-Oxa-6,8-Diazaanthra[2,3-d][1,3]Dioxole-7,9-Diones. Chin. Chem. Lett. 2011, 22, 811–814. DOI: 10.1016/j.cclet.2011.01.020.
  • Maleki, B.; Azarifar, D.; Hojati, S. F.; Veisi, H.; Gholizadeh, M.; Salehabadi, H.; Moghadam, M. K. Efficient 2,4,6-Trichloro-1,3,5-triazine-Catalyzed Synthesis of 2-Arylbenzothiazoles and Bisbenzothiazoles by Condensation of 2-Aminothiophenol with Aldehydes under Mild Conditions. J. Heterocycl. Chem. 2011, 48, 449–453. DOI: 10.1002/jhet.462.
  • Hashimoto, M.; Obora, Y.; Ishii, Y. An Efficient Catalytic Method for the Beckmann Rearrangement of Ketoximes to Lactams by Cyanuric Chloride and Phosphazene Catalysts. Org. Process Res. Dev. 2009, 13, 411–414. DOI: 10.1021/op800258s.
  • Furuya, Y.; Ishihara, K.; Yamamoto, H. Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst. J. Am. Chem. Soc. 2005, 127, 11240–11241. DOI: 10.1021/ja053441x.
  • Betti, C.; Landini, D.; Maia, A.; Pasi, M. Beckmann Rearrangement of Oximes Catalyzed by Cyanuric Chloride in Ionic Liquids. Synlett 2008, 2008, 908–910. DOI: 10.1055/s-2008-1042804.
  • Maia, A.; Albanese, D. C. M.; Landini, D. Cyanuric Chloride Catalyzed Beckmann Rearrangement of Ketoximes in Biodegradable Ionic Liquids. Tetrahedron 2012, 68, 1947–1950. DOI: 10.1016/j.tet.2011.12.051.
  • Ma, R.; Chen, X.; Xiao, Z.; Natarajan, M.; Lu, C.; Jiang, X.; Zhong, W.; Liu, X. Beckmann Rearrangement of Ketoximes Promoted by Cyanuric Chloride and Dimethyl Sulfoxide under a Mild Condition. Tetrahedron Lett. 2021, 63, 152707. DOI: 10.1016/j.tetlet.2020.152707.
  • Mahdavinia, G. H.; Bigdeli, M. A. Wet Cyanuric Chloride Promoted Efficient Synthesis of Amidoalkyl Naphthols under Solvent-Free Conditions. Chin. Chem. Lett. 2009, 20, 383–386. DOI: 10.1016/j.cclet.2008.12.018.
  • Zhang, P.; Zhang, Z. H. Preparation of Amidoalkyl Naphthols by a Three-Component Reaction Catalyzed by 2,4,6-Trichloro-1,3,5-Triazine under Solvent-Free Conditions. Monatsh. Chem. 2009, 140, 199–203. DOI: 10.1007/s00706-008-0059-5.
  • Kamble, V. T.; Joshi, N. S. Synthesis of β-Amino Alcohols by Ring Opening of Epoxides with Amines Catalyzed by Cyanuric Chloride under Mild and Solvent-Free Conditions. Green Chem. Lett. Rev. 2010, 3, 275–281. DOI: 10.1080/17518251003776885.
  • Bandgar, B. P.; Joshi, N. S.; Kamble, V. T. A Versatile and Practical Synthesis of 1,1-Diacetates from Aldehydes Catalyzed by Cyanuric Chloride. J. Chinese Chem. Soc. 2007, 54, 489–492. DOI: 10.1002/jccs.200700069.
  • Karimi, B.; Hazarkhani, H.; Zareyee, D. Trimethylchlorosilane (TMSCl) and Cyanuric Chloride (CC) Catalyzed Efficient Oxidative Coupling of Thiols with Dimethylsulfoxide. Synthesis 2002, 17, 2513–2516. DOI: 10.1055/s-2002-35634.
  • Liu, Y. Cyanuric Chloride-Catalyzed Thioacetalization for Organocatalytic Synthesis of Thioacetals. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 679–682. DOI: 10.1080/10426507.2015.1054934.
  • Bloch, R. Additions of Organometallic Reagents to C = N Bonds: Reactivity and Selectivity. Chem. Rev. 1998, 98, 1407–1438. DOI: 10.1021/cr940474e.
  • Weinreb, S. M. N-Sulfonyl Imines—Useful Synthons in Stereoselective Organic Synthesis. Stereoselect. Heterocycl. Synthesis 2008, 190, 131–184.
  • Wu, L.; Yang, X.; Wang, X.; Yan, F. Cyanuric Chloride-Catalyzed Synthesis of N-Sulfonyl Imines. J. Sulfur Chem. 2010, 31, 509–513. DOI: 10.1080/17415993.2010.521940.
  • Kamble, V. T.; Joshi, N. S.; Atkore, S. T. Cyanuric Chloride Catalysed Rapid Conversion of β-Ketoesters into β-Enaminoesters under Mild and Solvent-Free Conditions. JICS 2011, 8, 616–621. DOI: 10.1007/BF03245892.
  • Venkanna, P.; Rajanna, K.; Kumar, M.; Venkateswarlu, M.; Ali, M. An Efficient Method for Thiocyanation of Aromatic and Heteroaromatic Compounds Using Cyanuric Chloride and Ammonium Thiocyanate under Conventional and Nonconventional Conditions. Synlett 2015, 27, 237–240. DOI: 10.1055/s-0035-1560503.
  • Bandgar, B. P.; Joshi, N. S.; Bettigeri, S. V. 2,4,6-Trichloro-1,3,5-Triazine Catalyzed Chemoselective Transthioacetalization of Aldehyde Acetals and Oxathioacetals. Monatsh. Chem. 2007, 138, 67–71. DOI: 10.1007/s00706-006-0559-0.
  • Wan, J. P.; Jing, Y.; Liu, Y.; Sheng, S. Metal-Free Synthesis of Cyano Acrylates via Cyanuric Chloride-Mediated Three-Component Reactions Involving a Cascade Consists of Knoevenagel Condensation/Cyano Hydration/Esterification. RSC Adv. 2014, 4, 63997–64000. DOI: 10.1039/C4RA13826K.
  • Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. A Versatile and Practical Synthesis of Bis(Indolyl)Methanes/Bis(Indolyl)Glycoconjugates Catalyzed by Trichloro-1,3,5-Triazine. Tetrahedron Lett. 2004, 45, 7729–7732. DOI: 10.1016/j.tetlet.2004.08.084.
  • Das, B.; Kumar, R. A.; Thirupathi, P. One-Pot Three-Component Synthesis of α-Amino Nitriles Catalyzed by 2,4,6-Trichloro-1,3,5-Triazine (Cyanuric Acid). Helv. Chim. Acta. 2007, 90, 1206–1210. DOI: 10.1002/hlca.200790119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.