Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 12
640
Views
1
CrossRef citations to date
0
Altmetric
Articles

Organocatalyzed ipso hydroxylation of aryl boronic acids in aqueous medium: A metal free approach

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 893-906 | Received 02 Feb 2023, Published online: 23 Apr 2023

References

  • Sheldon, R. A.; Bode, M. L.; Akakios, S. G. Metrics of Green Chemistry: Waste Minimization. Curr. Opin. Green Sustain. Chem. 2022, 33, 100569. DOI: 10.1016/j.cogsc.2021.100569.
  • Becker, J.; Manske, C.; Randl, S. Green Chemistry and Sustainability Metrics in the Pharmaceutical Manufacturing Sector. Curr. Opin. Green Sustain. Chem. 2022, 33, 100562. DOI: 10.1016/j.cogsc.2021.100562.
  • Cseri, L.; Razali, M.; Pogany, P.; Szekely, G. Organic Solvents in Sustainable Synthesis and Engineering. Green Chem. Elsevier, 2018, 513–553. DOI: 10.1016/B978-0-12-809270-5.00020-0.
  • Kwon, G. T.; Kim, S. H. Tylenol® and Aspirin® as Green Promoters for Ipso-Hydroxylation of Arylboronic Acids. LOC 2022, 19, 902–907. DOI: 10.2174/1570178618666210907164813.
  • Saikia, T. C.; Iraqui, S.; Rashid, M. H. Synergistic Effect of PEG-Coated ZnO Nanoparticles and Ultrasonic Irradiation on the C–B Bond Cleavage of Aryl Boronic Acids. Sustain. Chem. Pharm. 2022, 25, 100613. DOI: 10.1016/j.scp.2022.100613.
  • Hugo, W. B. Phenols: A Review of Their History and Development as Antimicrobial Agents. Microbios 1978, 23, 83–85.
  • Rahim, M. A.; Kristufek, S. L.; Pan, S.; Richardson, J. J.; Caruso, F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew. Chem. Int. Ed. Engl. 2019, 58, 1904–1927. DOI: 10.1002/anie.201807804.
  • Scott, K. A.; Cox, P. B.; Njardarson, J. T. Phenols in Pharmaceuticals: Analysis of a Recurring Motif. J. Med. Chem. 2022, 65, 7044–7072. DOI: 10.1021/acs.jmedchem.2c00223.
  • Franco, C. A.; da Silva, T. I.; Dias, M. G.; Ferreira, B. W.; de Sousa, B. L.; Bousada, G. M.; Barreto, R. W.; Vaz, B. G.; Lima, G. d S.; Dos Santos, M. H.; et al. Synthesis of Tyrosol 1,2,3-Triazole Derivatives and Their Phytotoxic Activity against Euphorbia Heterophylla. J. Agric. Food Chem. 2022, 70, 2806–2816. DOI: 10.1021/acs.jafc.1c06012.
  • Parrales-Macias, V.; Harfouche, A.; Ferrié, L.; Haïk, S.; Michel, P. P.; Raisman-Vozari, R.; Figadère, B.; Bizat, N.; Maciuk, A. Effects of a New Natural Catechol-O-Methyl Transferase Inhibitor on Two In Vivo Models of Parkinson’s Disease. ACS Chem. Neurosci. 2022, 13, 3303–3313. DOI: 10.1021/acschemneuro.2c00356.
  • Bashir, M. A.; Wei, J.; Huifei, W.; Zhong, F.; Zhai, H. Recent Advances in Catalytic Oxidative Reactions of Phenols and Naphthalenols. Org. Chem. Front. 2022, 9, 5395–5413. DOI: 10.1039/D2QO00758D.
  • Iqbal, Z.; Joshi, A.; Ranjan De, S. Recent Advancements on Transition‐Metal‐Catalyzed, Chelation‐Induced Ortho‐Hydroxylation of Arenes. Adv. Synth. Catal. 2020, 362, 5301–5351. DOI: 10.1002/adsc.202000762.
  • Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X2110697. DOI: 10.1177/1934578X211069721.
  • Tokalı, F. S.; Taslimi, P.; Demircioğlu, İ. H.; Şendil, K.; Tuzun, B.; Gülçin, İ. Novel Phenolic Mannich Base Derivatives: Synthesis, Bioactivity, Molecular Docking, and ADME-Tox Studies. J. Iran. Chem. Soc. 2022, 19, 563–577. DOI: 10.1007/s13738-021-02331-8.
  • Galukhin, A.; Nosov, R.; Taimova, G.; Shulyatiev, A.; Nikolaev, I.; Islamov, D.; Vyazovkin, S. Mechanistic and Kinetic Insights into Phenol-Catalyzed Cyclotrimerization of Cyanate Esters. Thermochim. Acta 2022, 718, 179382. DOI: 10.1016/j.tca.2022.179382.
  • Chen, J.; Pan, S.; Zhou, J.; Lin, Z.; Qu, Y.; Glab, A.; Han, Y.; Richardson, J. J.; Caruso, F. Assembly of Bioactive Nanoparticles via Metal–Phenolic Complexation. Adv. Mater. 2022, 34, 2108624. DOI: 10.1002/adma.202108624.
  • Jiang, M.; Yang, H.; Fu, H. Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. Org. Lett. 2016, 18, 5248–5251. DOI: 10.1021/acs.orglett.6b02553.
  • Yang, X.; Jiang, X.; Wang, W.; Yang, Q.; Ma, Y.; Wang, K. Catalyst-and Solvent-Free Ipso-Hydroxylation of Arylboronic Acids to Phenols. RSC Adv. 2019, 9, 34529–34534. DOI: 10.1039/C9RA07201B.
  • Hock, H.; Lang, S. Autoxydation Von Kohlenwasserstoffen, IX. Mitteil.: Über Peroxyde Von Benzol‐Derivaten. Ber. dtsch. Chem. Ges. A/B 1944, 77, 257–264. DOI: 10.1002/cber.19440770321.
  • Zhao, D.; Wu, N.; Zhang, S.; Xi, P.; Su, X.; Lan, J.; You, J. Synthesis of Phenol, Aromatic Ether, and Benzofuran Derivatives by Copper‐Catalyzed Hydroxylation of Aryl Halides. Angew. Chem. 2009, 121, 8885–8888. DOI: 10.1002/ange.200903923.
  • Song, Z. Q.; Wang, D. H. Palladium-Catalyzed Hydroxylation of Aryl Halides with Boric Acid. Org. Lett. 2020, 22, 8470–8474. DOI: 10.1021/acs.orglett.0c03069.
  • Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. Copper-Catalyzed Hydroxylation of (Hetero) Aryl Halides under Mild Conditions. J. Am. Chem. Soc. 2016, 138, 13493–13496. DOI: 10.1021/jacs.6b08114.
  • Cheung, C. W.; Buchwald, S. L. Palladium-Catalyzed Hydroxylation of Aryl and Heteroaryl Halides Enabled by the Use of a Palladacycle Precatalyst. J. Org. Chem. 2014, 79, 5351–5358. DOI: 10.1021/jo500662s.
  • Das, S. K.; Tahu, M.; Gohain, M.; Deka, D.; Bora, U. Bio-Based Sustainable Heterogeneous Catalyst for Ipso-Hydroxylation of Arylboronic Acid. Sustainable Chem. Pharm. 2020, 17, 100296. DOI: 10.1016/j.scp.2020.100296.
  • Shin, E. J.; Kim, H. S.; Joo, S. R.; Shin, U. S.; Kim, S. H. Heterogeneous Palladium–Chitosan–CNT Core–Shell Nanohybrid Composite for Ipso-Hydroxylation of Arylboronic Acids. Catal. Lett. 2019, 149, 1560–1564. DOI: 10.1007/s10562-019-02682-1.
  • Pourmorteza, N.; Jafarpour, M.; Feizpour, F.; Rezaeifard, A. Cu (ii)–Vitamin C-Complex Catalyzed Photo-Induced Homocoupling Reaction of Aryl Boronic Acid in Base-Free and Visible Light Conditions. RSC Adv. 2022, 12, 4931–4938. DOI: 10.1039/D1RA07252H.
  • Fu, Z.; Yi, X.; Fang, Z.; Zhong, T.; He, D.; Guo, S.; Cai, H. An Electrochemical Method for Deborylative Hydroxylation of Arylboronic Acids under Metal‐Free Conditions. Chem. Asian J. 2022, 17, e202200780. DOI: 10.1002/asia.202200780.
  • Hiller, N. D.; do Amaral e Silva, N. A.; Tavares, T. A.; Faria, R. X.; Eberlin, M. N.; de Luna Martins, D. Arylboronic Acids and Their Myriad of Applications beyond Organic Synthesis. Eur. J. Org. Chem. 2020, 2020, 4841–4877. DOI: 10.1002/ejoc.202000396.
  • Mondal, S.; Das, K.; Panda, K. S. Iron Catalysis: A New Horizon towards Organoboron‐Mediated C–C Cross‐Coupling. Chem. Asian J. 2022, 17, e202200836. DOI: 10.1002/asia.202200836.
  • Zhu, J.; Li, Z.; Li, J.; Tian, D.; Xu, R.; Tan, Z.; Chen, Z.; Tang, W. Enantioselective Rhodium-Catalyzed Addition of Arylboronic Acids to N-Heteroaryl Ketones: Synthesis of α-Hydroxy Acids. Chem. Sci. 2023, 14, 1606–1612. DOI: 10.1039/D2SC05907J.
  • Chandra Saikia, T.; Borgohain, X.; Iraqui, S.; Rashid, M. H. Template-Less and Surfactant-Less Synthesis of CeO2 Nanostructures for Catalytic Application in Ipso-Hydroxylation of Aryl Boronic Acids and the Aza-Michael Reaction. ACS Omega 2022, 7, 42126–42137. DOI: 10.1021/acsomega.2c04614.
  • Rani, P.; Pundir, N.; Husain, A.; Bhasin, K. K.; Kumar, G. A Doubly Interpenetrated Cu (II)‐Based Metal‐Organic Framework as Heterogeneous Catalyst for the Ipso‐Hydroxylation of Arylboronic Acids. Eur. J. Inorg. Chem. 2023, 26, e202200654. DOI: 10.1002/ejic.202200654.
  • Fu, Z.; Hao, G.; Fu, Y.; He, D.; Tuo, X.; Guo, S.; Cai, H. Transition Metal-Free Electrocatalytic Halodeborylation of Arylboronic Acids with Metal Halides MX (X = I, Br) to Synthesize Aryl Halides. Org. Chem. Front. 2020, 7, 590–595. DOI: 10.1039/C9QO01139K.
  • Fan, C. H.; Xu, T.; Ke, Z.; Yeung, Y. Y. Autocatalytic Aerobic Ipso-Hydroxylation of Arylboronic Acid with Hantzsch Ester and Hantzsch Pyridine. Org. Chem. Front. 2022, 9, 4091–4096. DOI: 10.1039/D2QO00618A.
  • Dong, X.; Hao, H.; Zhang, F.; Lang, X. Blue Light Photocatalysis of Carbazole-Based Conjugated Microporous Polymers: Aerobic Hydroxylation of Phenylboronic Acids to Phenols. Appl. Catal. B 2022, 309, 121210. DOI: 10.1016/j.apcatb.2022.121210.
  • Usha, K. M.; Hegde, M. S.; Prasanna. Highly Recyclable Ti0.97Ni0.03O1.97 Catalyst Coated on Cordierite Monolith for Efficient Transformation of Arylboronic Acids to Phenols and Reduction of 4-Nitrophenol. Dalton Trans. 2021, 50, 14223–14234. DOI: 10.1039/D1DT02293H.
  • Choi, S. J.; Lee, Y. G.; Shin, U. S.; Kim, S. H. Carbocatalyst-Promoted Oxidative Hydroxylation of Arylboronic Acids. Tetrahedron Lett. 2022, 100, 153856. DOI: 10.1016/j.tetlet.2022.153856.
  • Bora, S. J.; Paul, R.; Dutta, A.; Goswami, S.; Guha, A. K.; Thakur, A. J. Trinuclear Mn2+/Zn2+ Based Microporous Coordination Polymers as Efficient Catalysts for Ipso-Hydroxylation of Boronic Acids. Dalton Trans. 2020, 49, 5454–5462. DOI: 10.1039/D0DT00794C.
  • Karthik, M.; Suresh, P. Graphene Oxide as a Carbocatalyst for Sustainable Ipso-Hydroxylation of Arylboronic Acids: A Simple and Straightforward Strategy to Access Phenols. ACS Sustain. Chem. Eng. 2019, 7, 9028–9034. DOI: 10.1021/acssuschemeng.9b01361.
  • Mahanta, A.; Saikia, T. C.; Bharali, S. J. Titanium Dioxide as an Efficient Heterogeneous Catalyst for Quick C–B Bond Cleavage of Aryl/Hetero Arylboronic Acid on Water at Room Temperature. Sustain. Chem. Pharm. 2020, 18, 100301. DOI: 10.1016/j.scp.2020.100301.
  • Latha, G.; Devarajan, N.; Karthik, M.; Suresh, P. Nickel-Catalyzed Oxidative Hydroxylation of Arylboronic Acid: Ni (HBTC) BPY MOF as an Efficient and Ligand-Free Catalyst to Access Phenolic Motifs. Catal. Commun. 2020, 136, 105911. DOI: 10.1016/j.catcom.2019.105911.
  • Cho, H. A.; Lee, Y. K.; Kim, S. H. Bare Magnetite-Promoted Oxidative Hydroxylation of Arylboronic Acids and Subsequent Conversion into Phenolic Compounds. Synlett 2022, 33, 1295–1301. DOI: 10.1055/s-0040-1719926.
  • Agarwal, S.; Deori, K. Copper Sulfide Nanosheets for Photocatalytic Oxidation of Benzyl Alcohols and Hydroxylation of Arylboronic Acids. ACS Appl. Nano Mater. 2022, 5, 4413–4422. DOI: 10.1021/acsanm.2c00516.
  • Begum, T.; Gogoi, A.; Gogoi, P. K.; Bora, U. Catalysis by Mont K-10 Supported Silver Nanoparticles: A Rapid and Green Protocol for the Efficient Ipso-Hydroxylation of Arylboronic Acids. Tetrahedron Lett. 2015, 56, 95–97. DOI: 10.1016/j.tetlet.2014.11.018.
  • Das, S. K.; Bhattacharjee, P.; Bora, U. Ascorbic Acid as a Highly Efficient Organocatalyst for Ipso‐Hydroxylation of Arylboronic Acid. ChemistrySelect 2018, 3, 2131–2134. DOI: 10.1002/slct.201703036.
  • Laskar, K.; Paul, S.; Bora, U. Cellulose as Recyclable Organocatalyst for Ipso-Hydroxylation of Arylboronic Acids. Tetrahedron Lett. 2019, 60, 151044. DOI: 10.1016/j.tetlet.2019.151044.
  • Mahanta, A.; Dutta, A.; Thakur, A. J.; Bora, U. Biocatalysis with Baker’s Yeast: A Green and Sustainable Approach for C–B Bond Cleavage of Aryl/Heteroarylboronic Acids and Boronate Esters at Room Temperature. Sustain. Chem. Pharm. 2021, 19, 100363. DOI: 10.1016/j.scp.2020.100363.
  • Gogoi, A.; Bora, U. An Iodine-Promoted, Mild and Efficient Method for the Synthesis of Phenols from Arylboronic Acids. Synlett 2012, 23, 1079–1081. DOI: 10.1055/s-0031-1290654.
  • Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. J. Highly Efficient Aerobic Oxidative Hydroxylation of Arylboronic Acids: Photoredox Catalysis Using Visible Light. Angew. Chem. Int. Ed. Engl. 2012, 51, 784–788. DOI: 10.1002/anie.201107028.
  • Gualandi, A.; Savoini, A.; Saporetti, R.; Franchi, P.; Lucarini, M.; Cozzi, P. G. A Facile Hydroxylation of Arylboronic Acids Mediated by Sodium Ascorbate. Org. Chem. Front. 2018, 5, 1573–1578. DOI: 10.1039/C8QO00061A.
  • Scoccia, J.; Perretti, M. D.; Monzón, D. M.; Crisóstomo, F. P.; Martín, V. S.; Carrillo, R. Sustainable Oxidations with Air Mediated by Gallic Acid: Potential Applicability in the Reutilization of Grape Pomace. Green Chem. 2016, 18, 2647–2650. DOI: 10.1039/C5GC02966J.
  • Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. A Simple Recipe for Sophisticated Cocktails: Organocatalytic One‐Pot Reactions—Concept, Nomenclature, and Future Perspectives. Angew. Chem. Int. Ed. Engl. 2011, 50, 8492–8509. DOI: 10.1002/anie.201102522.
  • Carlone, A.; Cabrera, S.; Marigo, M.; Jørgensen, K. A. A New Approach for an Organocatalytic Multicomponent Domino Asymmetric Reaction. Angew. Chem. Int. Ed. Engl. 2007, 46, 1101–1104. DOI: 10.1002/anie.200604479.
  • Moyano, A.; Rios, R. Asymmetric Organocatalytic Cyclization and Cycloaddition Reactions. Chem. Rev. 2011, 111, 4703–4832. DOI: 10.1021/cr100348t.
  • Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric Acid: Emerging Applications of Key Biotechnology Industrial Product. Chem. Cent. J. 2017, 11, 1–9. DOI: 10.1186/s13065-017-0251-y.
  • Behera, B. C.; Mishra, R.; Mohapatra, S. Microbial Citric Acid: Production, Properties, Application, and Future Perspectives. Food Front. 2021, 2, 62–76. DOI: 10.1002/fft2.66.
  • Koolivand, M.; Nikoorazm, M.; Ghorbani‐Choghamarani, A.; Tahmasbi, B. Cu–Citric Acid Metal–Organic Framework: Synthesis, Characterization and Catalytic Application in Suzuki–Miyaura Cross‐Coupling Reaction and Oxidation of Sulfides. Appl. Organ. Chem. 2021, 35, e6434. DOI: 10.1002/aoc.6434.
  • Kasprzyk, W.; Bednarz, S.; Żmudzki, P.; Galica, M.; Bogdał, D. Novel Efficient Fluorophores Synthesized from Citric Acid. RSC Adv. 2015, 5, 34795–34799. DOI: 10.1039/C5RA03226A.
  • Draelos, Z. D. The Combination of 2% 4‐Hydroxyanisole (Mequinol) and 0.01% Tretinoin Effectively Improves the Appearance of Solar Lentigines in Ethnic Groups. J. Cosmet. Dermatol. 2006, 5, 239–244. DOI: 10.1111/j.1473-2165.2006.00260.x.
  • Aghabarari, B. Room Temperature Synthesis of Mequinol by Using Ionic Liquids as Homogeneous Recyclable Catalysts. Iran. J. Chem. Chem. Eng. 2018, 37, 45–52. DOI: 10.30492/ijcce.2018.27251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.