Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 12
366
Views
1
CrossRef citations to date
0
Altmetric
Articles

Pyrrolidine-oxadiazolone conjugate as new organocatalyst for asymmetric aldol condensation

, , &
Pages 932-943 | Received 12 Dec 2022, Published online: 25 Apr 2023

References

  • Wurtz, C. A. Aldol Condensation. Bull. Soc. Chim. Fr 1872, 17, 436–442.
  • Wurtz, C. A. Ueber Einen Aldehyd‐Alkohol. J. Prakt. Chem 1872, 5, 457–464. DOI: 10.1002/prac.18720050148.
  • Wurtz, C. A. Sur Un Aldéhyde-Alcool. C. R. Hebd. Seances Acad. Sci.1872, 74, 1361–1367.
  • Mahrwald, R. Ed.; Wiley-VCH: Weinheim, 2004.
  • Trost, B. M.; Brindle, C. S. The Direct Catalytic Asymmetric Aldol Reaction. Chem. Soc. Rev. 2010, 39, 1600–1632. DOI: 10.1039/b923537j.
  • Braun, M.; Devant, R. (R)-and (S)-2-Acetoxy-1,1,2-Triphenylethanol-Effective Synthetic Equivalents of a Chiral Acetate Enolate. Tetrahedron. Lett. 1984, 25, 5031–5034. DOI: 10.1016/S0040-4039(01)91110-4.
  • Northrup, A. B.; MacMillan, D. W. C. Two-Step Synthesis of Carbohydrates by Selective Aldol Reactions. Science. 2004, 305, 1752–1755. DOI: 10.1126/science.1101710.
  • Cordova, A.; Ibrahem, I.; Casas, J.; Sunden, H.; Engqvist, M.; Reyes, E. Amino Acid Catalyzed Neogenesis of Carbohydrates: A Plausible Ancient Transformation. Chem. Eur. J. 2005, 11, 4772–4784. DOI: 10.1002/chem.200500139.
  • Kazmaier, U. Amino Acids-Valuable Organocatalysts in Carbohydrate Synthesis. Angew. Chem. Int. Ed. Engl. 2005, 44, 2186–2188. DOI: 10.1002/anie.200462873.
  • Nelson, S. G. Catalyzed Enantioselective Aldol Additions of Latent Enolate Equivalents. Tetrahedron. 1998, 9, 357–389. DOI: 10.1016/S0957-4166(97)00634-4.
  • Groger, H.; Vogl, E. M.; Shibasaki, M. New Catalytic Concepts for the Asymmetric Aldol Reaction. Chem. Eur. J. 1998, 4, 1137–1141. DOI: 10.1002/(SICI)1521-3765(19980710)4:7<1137::AID-CHEM1137>3.0.CO;2-Z.
  • Bach, T. Catalytic Enantioselective C-C Coupling-Allyl Transfer and Mukaiyama Aldol Reaction. Angew. Chem. Int. Ed. Engl. 1994, 33, 417–419. DOI: 10.1002/anie.199404171.
  • Denmark, S. E.; Stavenger, R. A.; Wong, K. T. Lewis Base-Catalyzed, Asymmetric Aldol Additions of Methyl Ketone Enolates. J. Org. Chem. 1998, 63, 918–919. DOI: 10.1021/jo972168h.
  • Trost, B. M. The Atom Economy-a Search for Synthetic Efficiency. Science. 1991, 254, 1471–1477. DOI: 10.1126/science.1962206.
  • Sheldon, R. A. Atom Efficiency and Catalysis in Organic Synthesis. Pure. Appl. Chem. 2000, 72, 1233–1246. DOI: 10.1351/pac200072071233.
  • Trost, B. M. On Inventing Reactions for Atom Economy. Acc. Chem. Res. 2002, 35, 695–705. DOI: 10.1021/ar010068z.
  • Trost, B. M.; Frederiksen, M. U.; Mathias, U.; Rudd, M. T. Ruthenium‐Catalyzed Reactions-a Treasure Trove of Atom‐Economic Transformations. Angew. Chem. Int. Ed. Engl. 2005, 44, 6630–6666. DOI: 10.1002/anie.200500136.
  • Guillena, G.; Ramon, D. J.; Yus, M. Alcohols as Electrophiles in C-C Bond‐Forming Reactions: The Hydrogen Autotransfer Process. Angew. Chem. Int. Ed. 2007, 46, 2358–2364. DOI: 10.1002/anie.200603794.
  • Li, J. J.; Johnson, D. S.; Sliskovic, D. R.; Roth, B. D. Contemporary drug synthesis.Wiley Intersciences,A John Wiley & Sons. Inc.Publication. 2004. DOI: 10.1002/0471686743.
  • Bach, T. Katalytische Varianten Enantioselektiver C‐C‐Verknüpfungen: Allylübertragung Und Mukaiyama‐Aldolreaktion. Angew. Chem 1994, 106, 433–435. DOI: 10.1002/ange.19941060406.
  • Hollis, T. K.; Bosnich, B. Homogeneous Catalysis. Mechanisms of the Catalytic Mukaiyama Aldol and Sakurai Allylation Reactions. J. Am. Chem. Soc. 1995, 117, 4570–4581. DOI: 10.1021/ja00121a015.
  • Machajewski, T. D.; Wong, C. H. The Catalytic Asymmetric Aldol Reaction. Angew. Chem. Int. Ed. 2000, 39, 1352–1375. DOI: 10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J.
  • Matafome, P.; Louro, T.; Rodrigues, L.; Crisostomo, J.; Nunes, E.; Amaral, C.; Monteiro, P.; Cipriano, A.; Seica, R. Metformin and Atorvastatin Combination Further Protect the Liver in Type 2 Diabetes with Hyperlipidaemia. Diabetes. Metab. Res. Rev. 2011, 27, 54–62. DOI: 10.1002/dmrr.1157.
  • Roth, B. D. The Discovery and Development of Atorvastatin, a Potent Novel Hypolipidemic Agent. Prog. Med. Chem. 2002, 40, 1–22. DOI: 10.1016/s0079-6468(08)70080-8.
  • Kobayashi, S.; Fujishita, Y.; Mukaiyama, T. The Efficient Catalytic Asymmetric Aldol-Type Reaction. Chem. Lett. 1990, 19, 1455–1458. DOI: 10.1246/cl.1990.1455.
  • Ghosh, A. K.; Onishi, M. Synthesis of Enantiomerically Pure anti-Aldols: A Highly Stereoselective Ester-Derived Titanium Enolate Aldol Reaction. J. Am. Chem. Soc. 1996, 118, 2527–2528. DOI: 10.1021/ja9539148.
  • Palomo, C.; Oiarbide, M.; Gonzalez, A.; Garcıa, J. M.; Berree, F.; Linden, A. New Chiral Acetate Imide Enolate for Stereoselective Aldol Reactions. Tetrahedron Lett 1996, 37, 6931–6934. DOI: 10.1016/0040-4039(96)01520-1.
  • Evans, D. A.; Murry, J. A.; Kozlowski, M. C. C 2-Symmetric Copper (II) Complexes as Chiral Lewis Acids. Catalytic Enantioselective Aldol Additions of Silylketene Acetals to (Benzyloxy) Acetaldehyde. J. Am. Chem. Soc 1996, 118, 5814–5815. DOI: 10.1021/ja960712i.
  • Cao, Z. Y.; Brittain, W. D. G.; Fossey, J. S.; Zhou, F. Recent Advances in the Use of Chiral Metal Complexes with Achiral Ligands for Application in Asymmetric Catalysis. Catal. Sci. Technol. 2015, 5, 3441–3451. DOI: 10.1039/C5CY00182J.
  • Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials. J Am Chem Soc 2009, 131, 7524–7525. DOI: 10.1021/ja901440g.
  • Benjamin, L. Thematic Issue on Organocatalysts. Chem. Rev. 2007, 107, 5413–5883.
  • Pellissier, H. Asymmetric Organocatalysis. Tetrahedron. 2007, 63, 9267–9331. DOI: 10.1016/j.tet.2007.06.024.
  • MacMillan, D. W. C. The Advent and Development of Organocatalysis. Nature. 2008, 455, 304–308. DOI: 10.1038/nature07367.
  • Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Asymmetric Aminocatalysis-Gold Rush in Organic Chemistry. Angew. Chem. Int. Ed. Engl. 2008, 47, 6138–6171. DOI: 10.1002/anie.200705523.
  • Dalko, P. I.; Moisan, L. Im Goldenen Zeitalter Der Organokatalyse. Angew. Chem. 2004, 116, 5248–5286. DOI: 10.1002/ange.200400650.
  • Bertelsen, S.; Jorgensen, K. A. Organocatalysis-after the Gold Rush. Chem. Soc. Rev. 2009, 38, 2178–2189. DOI: 10.1039/b903816g.
  • Gryko, D.; Lipiński, R. L‐Prolinethioamides–Efficient Organocatalysts for the Direct Asymmetric Aldol Reaction. Adv. Synth. Catal. 2005, 347, 1948–1952. DOI: 10.1002/adsc.200505247.
  • Guillena, G.; Hita, M. D. C.; Najera, C.; Viozquez, S. F. A Highly Efficient Solvent-Free Asymmetric Direct Aldol Reaction Organocatalyzed by Recoverable (S)-Binam-l-Prolinamides. ESI-MS Evidence of the Enamine-Iminium Formation. J. Org. Chem. 2008, 73, 5933–5943. DOI: 10.1021/jo800773q.
  • Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F. III, Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon − Carbon Bond-Forming Reactions. J. Am. Chem. Soc. 2001, 123, 5260–5267. DOI: 10.1021/ja010037z.
  • Dalko, P. I.; Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed. Engl. 2004, 43, 5138–5175. DOI: 10.1002/anie.200400650.
  • Heravi, M. M.; Zadsirjan, V.; Dehghani, M.; Hosseintash, N. Current Applications of Organocatalysts in Asymmetric Aldol Reactions: An Update. Tetrahedron. 2017, 28, 587–707. DOI: 10.1016/j.tetasy.2017.04.006.
  • Krištofíková, D.; Modrocká, V.; Mečiarová, M.; Šebesta, R. Green Asymmetric Organocatalysis. ChemSusChem. 2020, 13, 2828–2858. DOI: 10.1002/cssc.202000137.
  • List, B.; Lerner, R. A.; Barbas, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. DOI: 10.1021/ja994280y.
  • Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Asymmetric Direct Aldol Reaction Assisted by Water and a Proline‐Derived Tetrazole Catalyst. Angew. Chem. Int. Ed. Engl. 2004, 43, 1983–1986. DOI: 10.1002/anie.200352724.
  • Bellis, E.; Kokotos, G. 4-Substituted Prolines as Organocatalysts for Aldol Reactions. Tetrahedron 2005, 61, 8669–8676. DOI: 10.1016/j.tet.2005.06.113.
  • Companyo, X.; Valero, G.; Crovetto, L.; Moyano, A.; Rios, R. Highly Enantio‐and Diastereoselective Organocatalytic Desymmetrization of Prochiral Cyclohexanones by Simple Direct Aldol Reaction Catalyzed by Proline. Chemistry 2009, 15, 6564–6568. DOI: 10.1002/chem.200900488.
  • Tsandi, E.; Kokotos, C. G.; Kousidou, S.; Ragoussis, V.; Kokotos, G. Sulfonamides of Homoproline and Dipeptides as Organocatalysts for Michael and Aldol Reactions. Tetrahedron. 2009, 65, 1444–1449. DOI: 10.1016/j.tet.2008.12.008.
  • List, B.; Pojarliev, P.; Castello, C. Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and α-Unsubstituted Aldehydes. Org. Lett. 2001, 3, 573–575. DOI: 10.1021/ol006976y.
  • Tang, Z.; Yang, Z. H.; Chen, X. H.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones with Aldedydes. J Am Chem Soc 2005, 127, 9285–9289. DOI: 10.1021/ja0510156.
  • Zu, L.; Xie, H.; Li, H.; Wang, J.; Wang, W. Highly Enantioselective Aldol Reactions Catalyzed by a Recyclable Fluorous (S) pyrrolidine Sulfonamide on Water. Org. Lett. 2008, 10, 1211–1214. DOI: 10.1021/ol800074z.
  • Mei, K.; Zhang, S.; He, S.; Li, P.; Jin, M.; Xue, F.; Luo, G.; Zhang, H.; Song, L.; Duan, W.; Wang, W. (S)-Pyrrolidine Sulfonamide Catalyzed Asymmetric Direct Aldol Reactions of Aryl Methyl Ketones with Aryl Aldehydes. Tetrahedron. Lett. 2008, 49, 2681–2684. DOI: 10.1016/j.tetlet.2008.02.164.
  • Jacoby, C. G.; Vontobel, P. H. V.; Bach, M. F.; Schneider, P. H. Highly Efficient Organocatalysts for the Asymmetric Aldol Reaction. New J. Chem. 2018, 42, 7416–7421. DOI: 10.1039/C7NJ04424K.
  • Vlasserou, I.; Sfetsa, M.; Gerokonstantis, D. T.; Kokotos, C. G.; Moutevelis-Minakakis, P. Combining Prolinamides with 2-Pyrrolidinone: Novel Organocatalysts for the Asymmetric Aldol Reaction. Tetrahedron. 2018, 74, 2338–2349. DOI: 10.1016/j.tet.2018.03.054.
  • Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J. P. A Simple Primary-Tertiary diamine-Brønsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones. J. Am. Chem. Soc. 2007, 129, 3074–3075. DOI: 10.1021/ja069372j.
  • Ashokkumar, V.; Chithiraikumar, C.; Siva, A. Binaphthyl-Based Chiral Bifunctional Organocatalysts for Water Mediated Asymmetric List-Lerner-Barbas Aldol Reactions. Org. Biomol. Chem. 2016, 14, 9021–9032. DOI: 10.1039/c6ob01558a.
  • Zhou, Y.; Shan, Z. Chiral Spiroborate Esters Catalyzed Highly Enantioselective Direct Aldol Reaction. Tetrahedron. 2006, 62, 5692–5696. DOI: 10.1016/j.tet.2006.03.084.
  • Cheon, C. H.; Yamamoto, H. N-Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones. Org. Lett. 2010, 12, 2476–2479. DOI: 10.1021/ol100233t.
  • Mahato, C. K.; Kundu, M.; Pramanik, A. Solvent Free, Fast and Asymmetric Michael Additions of Ketones to Nitroolefins Using Chiral Pyrrolidine-Pyridone Conjugate Bases as Organocatalysts. Tetrahedron 2017, 28, 511–515. DOI: 10.1016/j.tetasy.2017.03.002.
  • Lindstrom, U. M. Stereoselective Organic Reactions in Water. Chem. Rev. 2002, 102, 2751–2772. DOI: 10.1021/cr010122p.
  • Kobayashi, S.; Manabe, K. Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media. Acc. Chem. Res. 2002, 35, 209–217. DOI: 10.1021/ar000145a.
  • Bolton, R. E.; Coote, S. J.; Finch, H.; Lowdon, A.; Pegg, N.; Vinader, M. V. 3-substituted-1, 2, 4-Oxadiazolin-5-One; a Useful Amidine Precursor and Protecting Group. Tetrahedron. Lett. 1995, 36, 4471–4474. DOI: 10.1016/0040-4039(95)00755-2.
  • Mahato, C. K.; Mukherjee, S.; Kundu, M.; Pramanik, A. Pyrrolidine-Oxadiazolone Conjugates as Organocatalysts in Asymmetric Michael Reaction. J. Org. Chem. 2019, 84, 1053–1063. DOI: 10.1021/acs.joc.8b02393.
  • Mangette, J. E.; Johnson, M. R.; Le, V.-D.; Shenoy, R. A.; Roark, H.; Stier, M.; Belliotti, T.; Capiris, T.; Guzzo, P. R. The Preparation of Optically Active α-Amino 4H-[1,2,4] Oxadiazol-5-Ones from Optically Active α-Amino Acids. Tetrahedron. 2009, 65, 9536–9541. DOI: 10.1016/j.tet.2009.09.045.
  • Zhou, J.; Chang, Q.; Gan, L.-H.; Peng, Y.-G. The Roles of Benzoic Acid and Water on the Michael Reactions of Pentanal and Nitrostyrene Catalyzed by Diarylprolinol Silyl Ether. Org Biomol Chem 2012, 10, 6732–6739. DOI: 10.1039/c2ob25970b.
  • Mahato, C. K.; Mukherjee, S.; Kundu, M.; Vallapure, V. P.; Pramanik, A. Asymmetric 1,4-Michael Addition in Aqueous Medium Using Hydrophobic Chiral Organocatalysts. J. Org. Chem. 2021, 86, 5213–5226. DOI: 10.1021/acs.joc.1c00124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.