Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 19
191
Views
0
CrossRef citations to date
0
Altmetric
Articles

Organocatalyzed Mannich reaction: Electrochemically synthesized prolinated carbon dots vs. prolinated graphene oxide

, , , &
Pages 1647-1663 | Received 08 Jun 2023, Published online: 02 Aug 2023

References

  • List, B.; Lerner, R. A.; Barbas, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. DOI: 10.1021/ja994280y.
  • Oliveira, V.; Cardoso, M.; Forezi, L. Organocatalysis: A Brief Overview on Its Evolution and Applications. Catalysts. 2018, 8, 605. DOI: 10.3390/catal8120605.
  • Vachan, B. S.; Karuppasamy, M.; Vinoth, P.; Kumar, S. V.; Perumal, S.; Sridharan, V. C.; Menéndez, J. Proline and Its Derivatives as Organocatalysts for Multi-Component Reactions in Aqueous Media: Synergic Pathways to the Green Synthesis of Heterocycles. Adv. Synth. Catal. 2020, 362, 87–110. DOI: 10.1002/adsc.201900558.
  • Kamanna, K. Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis. COCAT. 2021, 8, 126–146. DOI: 10.2174/2213337207999201117093848.
  • Vetica, F.; Pandolfi, F.; Pettazzoni, L.; Leonelli, F.; Bortolami, M. Organocatalyst Design for the Stereoselective Annulation towards Bicyclic Diketones and Analogues. Symmetry. 2022, 14, 355. DOI: 10.3390/sym14020355.
  • Bergbreiter, D. E.; Tian, J.; Hongfa, C. Using Soluble Polymer Supports to Facilitate Homogeneous Catalysis. Chem. Rev. 2009, 109, 530–582. DOI: 10.1021/cr8004235.
  • Gruttadauria, M.; Giacalone, F.; Noto, R. Supported Proline and Proline-Derivatives as Recyclable Organocatalysts. Chem. Soc. Rev. 2008, 37, 1666–1688. DOI: 10.1039/b800704g.
  • Ayats, C.; Henseler, A. H.; Dibello, E.; Pericàs, M. A. Continuous Flow Enantioselective Three-Component anti-Mannich Reactions Catalyzed by a Polymer-Supported Threonine Derivative. ACS Catal. 2014, 4, 3027–3033. DOI: 10.1021/cs5006037.
  • Voitko, K. V. Asymmetric Catalysis Under 1D/2D Nanostructured Carbon Materials. J. Nanosci. Nanotechnol. 2019, 19, 5074–5088. DOI: 10.1166/jnn.2019.16897.
  • Khabnadideh, S.; Mirzaei, E.; Amiri-Zirtol, L. L-Arginine Modified Graphene Oxide: A Novel Heterogeneous Catalyst for Synthesis of Benzo[b]Pyrans and Pyrano[3,2–c]Chromenes. J. Mol. Struct. 2022, 1261, 132934. DOI: 10.1016/j.molstruc.2022.132934.
  • Ostadhossein, F.; Vulugundam, G.; Misra, S. K.; Srivastava, I.; Pan, D. Chirality Inversion on the Carbon Dot Surface via Covalent Surface Conjugation of Cyclic α‐Amino Acid Capping Agents. Bioconjug. Chem. 2018, 29, 3913–3922. DOI: 10.1021/acs.bioconjchem.8b00736.
  • Slepičková Kasálková, N.; Slepička, P.; Švorčík, V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials 2021, 11, 2368. DOI: 10.3390/nano11092368.
  • Chronopoulos, D. D.; Kokotos, C. G.; Tsakos, M.; Karousis, N.; Kokotos, G.; Tagmatarchis, N. Conjugating Proline Derivatives onto Multi-Walled Carbon Nanotubes: Preparation, Characterization and Catalytic Activity in Water. Mater. Lett. 2015, 157, 212–214. DOI: 10.1016/j.matlet.2015.05.060.
  • Xu, J.; Liang, J.; Huang, S.; Yang, G.; Tian, K.; Chen, R.; Chen, H.; Zhang, Y. On the Exceptionally High Loading of L-Proline on Multi-Wall Carbon Nanotubes. Catalysts. 2020, 10, 1246. DOI: 10.3390/catal10111246.
  • Babaei, P.; Safaei-Ghomi, J. L-Proline Covered N Doped Graphene Quantum Dots Modified CuO/ZnO Hexagonal Nanocomposite as a Robust Retrievable Catalyst in Synthesis of Substituted Chiral 2-Amino-4H-Chromenes. Mater. Chem. Phys. 2021, 267, 124668. DOI: 10.1016/j.matchemphys.2021.124668.
  • Tan, R.; Li, C.; Luo, J.; Kong, Y.; Zheng, W.; Yin, D. An Effective Heterogeneous L-Proline Catalyst for the Direct Asymmetric Aldolreaction Using Graphene Oxide as Support. J. Catal. 2013, 298, 138–147. DOI: 10.1016/j.jcat.2012.11.024.
  • Zhang, W.; Li, Z.; Gu, H.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. L-Proline Covalently Anchored on Graphene Oxide as an Effective Bifunctional Catalyst for Ketene Forming Reaction. Chem. Eng. Sci. 2015, 135, 187–192. DOI: 10.1016/j.ces.2015.04.050.
  • Bhardiya, S. R.; Asati, A.; Sheshma, H.; Rai, A.; Rai, V. K.; Singh, M. A Novel Bioconjugated Reduced Graphene Oxide-Based Nanocomposite for Sensitive Electrochemical Detection of Cadmium in Water. Sens. Actuators: B Chem. 2021, 328, 129019. DOI: 10.1016/j.snb.2020.129019.
  • Bortolami, M.; Bogles, I. I.; Bombelli, C.; Pandolfi, F.; Feroci, M.; Vetica, F. Electrochemical Bottom-Up Synthesis of Chiral Carbon Dots from L-Proline and Their Application as Nano-Organocatalysts in a Stereoselective Aldol Reaction. Molecules. 2022, 27, 5150. DOI: 10.3390/molecules27165150.
  • Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. DOI: 10.1021/acscentsci.0c01306.
  • Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S.-T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. Engl. 2010, 49, 4430–4434. DOI: 10.1002/anie.200906154.
  • Arcudi, F.; Đorđević, L.; Prato, M. Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogen-Doped Carbon NanoDots. Angew. Chem. Int. Ed. Engl. 2016, 55, 2107–2112. DOI: 10.1002/anie.201510158.
  • Ehrat, F.; Bhattacharyya, S.; Schneider, J.; Löf, A.; Wyrwich, R.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores. Nano Lett. 2017, 17, 7710–7716. DOI: 10.1021/acs.nanolett.7b03863.
  • Ostadhossein, F.; Pan, D. Functional Carbon Nanodots for Multiscale Imaging and Therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1436. DOI: 10.1002/wnan.1436.
  • Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small. 2015, 11, 1620–1636. DOI: 10.1002/smll.201402648.
  • Li, R. S.; Gao, P. F.; Zhang, H. Z.; Zheng, L. L.; Li, C. M.; Wang, J.; Li, Y. F.; Liu, F.; Li, N.; Huang, C. Z. Chiral Nanoprobes for Targeting and Long-Term Imaging of the Golgi Apparatus. Chem. Sci. 2017, 8, 6829–6835. DOI: 10.1039/c7sc01316g.
  • Rosso, C.; Filippini, G.; Prato, M. Carbon Dots as Nano-Organocatalysts for Synthetic Applications. ACS Catal. 2020, 10, 8090–8105. DOI: 10.1021/acscatal.0c01989.
  • Liu, S.; He, Y.; Liu, Y.; Wang, S.; Jian, Y.; Li, B.; Xu, C. One-Step Hydrothermal Synthesis of Chiral Carbon Dots with High Asymmetric Catalytic Activity for an Enantioselective Direct Aldol Reaction. Chem. Commun. 2021, 57, 3680–3683. DOI: 10.1039/d1cc00755f.
  • Rosso, C.; Filippini, G.; Prato, M. Use of Nitrogen-Doped Carbon Nanodots for the Photocatalytic Fluoroalkylation of Organic Compounds. Chemistry. 2019, 25, 16032–16036. DOI: 10.1002/chem.201903433.
  • Ge, L.; Pan, N.; Jin, J.; Wang, P.; LeCroy, G. E.; Liang, W.; Yang, L.; Teisl, L. R.; Tang, Y.; Sun, Y.-P. Systematic Comparison of Carbon Dots from Different Preparations-Consistent Optical Properties and Photoinduced Redox Characteristics in Visible Spectrum and Structural and Mechanistic Implications. J. Phys. Chem. C. 2018, 122, 21667–21676. DOI: 10.1021/acs.jpcc.8b06998.
  • Rocco, D.; Moldoveanu, V. G.; Feroci, M.; Bortolami, M.; Vetica, F. Electrochemical Synthesis of Carbon Quantum Dots. ChemElectroChem. 2023, 10, e202201104. DOI: 10.1002/celc.202201104.
  • Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials. 2021, 11, 3419. DOI: 10.3390/nano11123419.
  • He, C.; Xu, P.; Zhang, X.; Long, W. The Synthetic Strategies, Photoluminescence Mechanisms and Promising Applications of Carbon Dots: Current State and Future Perspective. Carbon. 2022, 186, 91–127. DOI: 10.1016/j.carbon.2021.10.002.
  • Filippini, G.; Amato, F.; Rosso, C.; Ragazzon, G.; Vega-Peñaloza, A.; Companyó, X.; Dell’Amico, L.; Bonchio, M.; Prato, M. Mapping the Surface Groups of Amine-Rich Carbon Dots Enables Covalent
Catalysis in Aqueous Media. Chemistry. 2020, 6, 3022–3037. DOI: 10.1016/j.chempr.2020.08.009.
  • Pollok, D.; Waldvogel, S. R. Electro-Organic Synthesis – a 21st Century Technique. Chem. Sci. 2020, 11, 12386–12400. DOI: 10.1039/d0sc01848a.
  • Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying Organic Synthesis. Angew. Chem. Int. Ed. Engl. 2018, 57, 5594–5619. DOI: 10.1002/anie.201711060.
  • Rafiee, M.; Mayer, M. N.; Punchihewa, B. T.; Mumau, M. R. Constant Potential and Constant Current Electrolysis: An Introduction and Comparison of Different Techniques for Organic Electrosynthesis. J. Org. Chem. 2021, 86, 15866–15874. DOI: 10.1021/acs.joc.1c01391.
  • Ding, X.; Niu, Y.; Zhang, G.; Xu, Y.; Li, J. Electrochemistry in Carbon-Based Quantum Dots. Chem Asian J. 2020, 15, 1214–1224. DOI: 10.1002/asia.202000097.
  • Niu, F.; Xu, Y.; Liu, J.; Song, Z.; Liu, M.; Liu, J. Controllable Electrochemical/Electroanalytical Approach to Generatenitrogen-Doped Carbon Quantum Dots from Varied Amino Acids: Pinpointing the Utmost Quantum Yield and the Versatilephotoluminescent and Electrochemiluminescent Applications. Electrochim. Acta. 2017, 236, 239–251. DOI: 10.1016/j.electacta.2017.03.085.
  • Panday, S. K. Advances in the Chemistry of Proline and Its Derivatives: An Excellent Amino Acid with Versatile Applications in Asymmetric Synthesis. Tetrahedron: Asym. 2011, 22, 1817–1847. DOI: 10.1016/j.tetasy.2011.09.013.
  • Liu, J.; Wang, L. Recent Advances in Asymmetric Reactions Catalyzed by Proline and Its Derivatives. Synthesis 2016, 49, 960–972. DOI: 10.1055/s-0036-1588901.
  • Juaristi, E. Recent Developments in Next Generation (S)-Proline-Derived Chiral Organocatalysts. Tetrahedron 2021, 88, 132143. DOI: 10.1016/j.tet.2021.132143.
  • Straminelli, L.; Vicentini, F.; Di Sabato, A.; Montone, C. M.; Cavaliere, C.; Rissanen, K.; Leonelli, F.; Vetica, F. Stereoselective Synthesis of Spiro-Decalin Oxindole Derivatives via Sequential Organocatalytic Michael–Domino Michael/Aldol Reaction. J. Org. Chem. 2022, 87, 10454–10461. DOI: 10.1021/acs.joc.2c01046.
  • List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction: Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols. J. Am. Chem. Soc. 2002, 124, 827–833. DOI: 10.1021/ja0174231.
  • Teo, Y.-C.; Lau, J.-J.; Wu, M.-C. Direct Asymmetric Three-Component Mannich Reactions Catalyzed by a Siloxy Serine Organocatalyst in Water. Tetrahedron: Asym. 2008, 19, 186–190. DOI: 10.1016/j.tetasy.2007.12.011.
  • Wu, Y.-S.; Cai, J.; Hu, Z.-Y.; Lin, G.-X. A New Class of Metal-Free Catalysts for Direct Diastereo- and Regioselective Mannich Reactions in Aqueous Media. Tetrahedron Lett. 2004, 45, 8949–8952. DOI: 10.1016/j.tetlet.2004.09.174.
  • Rostoll-Berenguer, J.; Blay, G.; Muñoz, M. C.; Pedro, J. R.; Vila, C. A Combination of Visible-Light Organophotoredox Catalysis and Asymmetric Organocatalysis for the Enantioselective Mannich Reaction of Dihydroquinoxalinones with Ketones. Org. Lett. 2019, 21, 6011–6015. DOI: 10.1021/acs.orglett.9b02157.
  • Bernardi, L.; Ricci, A.; Comes Franchini, M. Organocatalytic Asymmetric Mannich Reactions in the Preparation of Enantioenriched β3-Amino Acid Derivatives. COC. 2011, 15, 2210–2226. DOI: 10.2174/138527211796150697.
  • Kataja, A. O.; Masson, G. Imine and Iminium Precursors as Versatile Intermediates in Enantioselective Organocatalysis. Tetrahedron. 2014, 70, 8783–8815. DOI: 10.1016/j.tet.2014.06.101.
  • Cheng, D.-J.; Shao, Y.-D. Advances in the Organocatalytic Asymmetric Mannich Reaction of Six-Membered Unsaturated Heterocycles: Methodology and Application. ChemCatChem 2019, 11, 2575–2589. DOI: 10.1002/cctc.201900379.
  • Mannich, C.; Krösche, W. Ueber Ein Kondensationsprodukt Aus Formaldehyd, Ammoniak Und Antipyrin. Arch. Pharm. Pharm. Med. Chem. 1912, 250, 647–667. DOI: 10.1002/ardp.19122500151.
  • Gasperi, T.; Orsini, M.; Vetica, F.; de Figueiredo, R. M. Organocatalytic Asymmetric Multicomponent Reactions. In Multicomponent Reactions in Concepts and Applications for Design and Synthesis; Herrera, R. P.; Marqués-López, E., Eds.; Wiley, 2015; pp 16–71.
  • Vetica, F.; Fronert, J.; Puttreddy, R.; Rissanen, K.; Enders, D. Asymmetric Organocatalytic Synthesis of 4-Amino-Isochromanones via a Direct One-Pot Intramolecular Mannich Reaction. Synthesis 2016, 48, 4451–4458. DOI: 10.1055/s-0035-1562522.
  • Mukhopadhyay, S.; Pan, S. C. An Organocatalytic Asymmetric Mannich Reaction for the Synthesis of 3,3-Disubstituted-3,4-Dihydro-2-Quinolones. Org. Biomol. Chem. 2018, 16, 5407–5411. DOI: 10.1039/c8ob01399c.
  • Bagheri, I.; Mohammadi, L.; Zadsirjan, V.; Heravi, M. M. Organocatalyzed Asymmetric Mannich Reaction: An Update. ChemistrySelect. 2021, 6, 1008–1066. DOI: 10.1002/slct.202003034.
  • Allochio Filho, J. F.; Lemos, B. C.; de Souza, A. S.; Pinheiro, S.; Greco, S. J. Multicomponent Mannich Reactions: General Aspects, Methodologies and Applications. Tetrahedron. 2017, 73, 6977–7004. DOI: 10.1016/j.tet.2017.10.063.
  • List, B. The Direct Catalytic Asymmetric Three-Component Mannich Reaction. J. Am. Chem. Soc. 2000, 122, 9336–9337. DOI: 10.1021/ja001923x.
  • Gentile, G.; Mamone, M.; Rosso, C.; Amato, F.; Lanfrit, C.; Filippini, G.; Prato, M. Tailoring the Chemical Structure of Nitrogen-Doped Carbon Dots for Nano-Aminocatalysis in Aqueous Media. ChemSusChem 2023, 16, e202202399. DOI: 10.1002/cssc.202202399.
  • Li, J.-Y.; Li, Y.-H.; Qi, M.-Y.; Lin, Q.; Tang, Z.-R.; Xu, Y.-J. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal. 2020, 10, 6262–6280. DOI: 10.1021/acscatal.0c01567.
  • Zhang, N.; Yang, M.-Q.; Liu, S.; Sun, Y.; Xu, Y.-J. Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chem. Rev. 2015, 115, 10307–10377. DOI: 10.1021/acs.chemrev.5b00267.
  • Li, Y.-H.; Tang, Z.-R.; Xu, Y.-J. Multifunctional Graphene-Based Composite Photocatalysts Oriented by Multifaced Roles of Graphene in Photocatalysis. Chin. J. Catal. 2022, 43, 708–730. DOI: 10.1016/S1872-2067(21)63871-8.
  • Yang, M.-Q.; Xu, Y.-J. Selective Photoredox Using Graphene-Based Composite Photocatalysts. Phys. Chem. Chem. Phys. 2013, 15, 19102–19118. DOI: 10.1039/c3cp53325e.
  • Han, C.; Li, Y.-H.; Qi, M.-Y.; Zhang, F.; Tang, Z.-R.; Xu, Y.-J. Surface/Interface Engineering of Carbon-Based Materials for Constructing Multidimensional Functional Hybrids. Sol. RRL. 2020, 4, 1900577. DOI: 10.1002/solr.201900577.
  • Keshavarz, M.; Zarei Ahmady, A.; Vaccaro, L.; Kardani, M. Non-Covalent Supported of L-Proline on Graphene Oxide/Fe3O4 Nanocomposite: A Novel, Highly Efficient and Superparamagnetically Separable Catalyst for the Synthesis of Bis-Pyrazole Derivatives. Molecules 2018, 23, 330. DOI: 10.3390/molecules23020330.
  • Jaiswal, K.; Girish, Y. R.; De, M. Group-VI-Chalcogenide-Based Nanomaterials in Photo/Thermal Organic Transformations. Acc. Mater. Res. 2022, 3, 1033–1048. DOI: 10.1021/accountsmr.2c00110.
  • Foschi, M.; Capasso, P.; Maggi, M. A.; Ruggieri, F.; Fioravanti, G. Experimental Design and Response Surface Methodology Applied to Graphene Oxide Reduction for Adsorption of Triazine Herbicides. ACS Omega. 2021, 6, 16943–16954. DOI: 10.1021/acsomega.1c01877.
  • Rambabu, G.; Bhat, S. D. Amino Acid Functionalized Graphene Oxide Based Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells. J. Membrane Sci. 2018, 551, 1–11. DOI: 10.1016/j.memsci.2018.01.026.
  • Yin, Z.; Guo, J.; Zhang, R.; Hu, X.; Borovkov, V. Direct Asymmetric Three-Component Mannich Reaction Catalyzed by Chiral Counteranion-Assisted Silver. J. Org. Chem. 2020, 85, 10369–10377. DOI: 10.1021/acs.joc.0c00031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.