Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 24
84
Views
1
CrossRef citations to date
0
Altmetric
Articles

Design, synthesis, antibacterial evaluation, and molecular docking studies of diethyl((substituted phenyl)((4-(N-(5-methyl-4,5-dihydroisoxazol-3-yl)sulfamoyl)phenyl) amino)methyl)phosphonates

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 2117-2133 | Received 11 Nov 2022, Published online: 25 Oct 2023

References

  • Kudzin, Z. H.; Kudzin, M. H.; Drabowicz, J.; Stevens, C. V. Aminophosphonic Acids-Phosphorus Analogues of Natural Amino Acids. Part 1: Syntheses of α-Aminophosphonic Acids. COC 2011, 15, 2015–2071. DOI: 10.2174/138527211795703612.
  • Moonen, K.; Laureyn, I.; Stevens, C. V. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity. Chem. Rev. 2004, 104, 6177–6215. DOI: 10.1021/cr030451c.
  • Huang, J.; Chen, R. An Overview of Recent Advances on the Synthesis and Biological Activity of α-Aminophosphonic Acid Derivatives. Heteroatom Chem. 2000, 11, 480–492. DOI: 10.1002/1098-1071(2000)11:7<480::AID-HC6>3.0.CO;2-J.
  • Naydenova, E. D.; Todorov, P. T.; Mateeva, P. I.; Zamfirova, R. N.; Pavlov, N. D.; Todorov, S. B. Synthesis and Biological Activity of Novel Small Peptides with Aminophosphonates Moiety as NOP Receptor Ligands. Amino Acids 2010, 39, 1537–1543. DOI: 10.1007/s00726-010-0624-1.
  • Lejczak, B.; Kafarski, P.; Sztajer, H.; Mastalerz, P. Antibacterial Activity of Phosphono Dipeptides Related to Alafosfalin. J. Med. Chem. 1986, 29, 2212–2217. DOI: 10.1021/jm00161a014.
  • Atherton, F. R.; Hassall, C. H.; Lambert, R. W. Synthesis and Structure- Activity Relationships of Antibacterial Phosphonopeptides Incorporating (l-Aminoethy1) Phosphonic Acid and (Aminomethy1)Phosphonic Acid. J. Med. Chem. 1986, 29, 29–40. DOI: 10.1021/jm00151a005.
  • Meyer, J. H.; Bartlett, P. A. Macrocyclic Inhibitors of Penicillopepsin. 1. Design, Synthesis, and Evaluation of an Inhibitor Bridged between P1 and P3. J. Am. Chem. Soc. 1998, 120, 4600–4609. DOI: 10.1021/ja973715j.
  • Sikorski, J. A.; Miller, M. J.; Braccolino, D. S.; Cleary, D. G.; Corey, S. D.; Font, J. L.; Gruys, K. J.; Han, C. Y.; Lin, K.-C.; Pansegrau, P. D.; et al. EPSP Synthase: The Design and Synthesis of Bisubstrate Inhibitors Incorporating Novel 3-Phosphate Mimics. Phosphorus Sulfur Silicon 1993, 76, 115–118. DOI: 10.1080/10426509308032372.
  • Xue-Lian, T.; Xin-Ying, Y.; Hyun-Ju, J.; Sung-Yeon, K.; Suk-Yul, J.; Du-Young, C.; Won- Cheol, P.; Hyun, P. Asiatic Acid Induces Colon Cancer Cell Growth Inhibition and Apoptosis through Mitochondrial Death Cascade. Biol. Pharm. Bull. 2009, 32, 1399–1405. DOI: 10.1248/bpb.32.1399.
  • Sujatha, B.; Mohan, S.; Subramanyam, C.; Prasada Rao, K. Microwave-Assisted Synthesis and anti-Inflammatory Activity Evaluation of Some Novel α-Aminophosphonates. Phosphorus Sulfur Silicon 2017, 192, 1110–1113. DOI: 10.1080/10426507.2017.1331233.
  • Mulla, S. A. R.; Pathan, M. Y.; Chavan, S. S.; Gample, S. P.; Sarkar, D. Highly Efficient One-Pot Multi-Component Synthesis of α-Aminophosphonates and Bis-α-Aminophosphonates Catalyzed by Heterogeneous Reusable Silica Supported Dodecatungstophosphoric Acid (DTP/SiO2) at Ambient Temperature and Their Antitubercular Evaluation against Mycobactrium Tuberculosis. RSC Adv. 2014, 4, 7666–7672. DOI: 10.1039/c3ra45853a.
  • Smith, A. B. III, Taylor, C. M.; Benkovic, S. J.; Hirschmann, R. Peptide Bond Formation via Catalytic Antibodies: Synthesis of a Novel Phosphonate Diester Hapten. Tetrahedron Lett. 1994, 35, 6853–6856. DOI: 10.1016/0040-4039(94)85022-4.
  • Rao, A. J.; Rao, P. V.; Rao, V. K.; Mohan, C.; Raju, C. N.; Reddy, C. S. Microwave Assisted One-Pot Synthesis of Novel α-Aminophosphonates and Their Biological Activity. Bull. Korean Chem. Soc. 2010, 31, 1863–1868. DOI: 10.5012/bkcs.2010.31.7.1863.
  • Sreekanth, T.; Mohan, G.; Santhisudha, S.; Nadiveedhi, M. R.; Murali, S.; Rajasekhar, A.; Chippada, A. R.; Reddy, C. S. Meglumine Sulfate Catalyzed One-Pot Green Synthesis and Antioxidant Activity of α-Aminophosphonates. Synth. Commun. 2019, 49, 563–575. DOI: 10.1080/00397911.2018.1563795.
  • Sreelakshmi, P.; Santhisudha, S.; Raghavendra, R. G.; Subbarao, Y.; Peddanna, K.; Apparao, C.; Reddy, C. S. Nano-Cuo-Au-Catalyzed Solvent-Free Synthesis of α-Aminophosphonates and Evaluation of Their Antioxidant and α-Glucosidase Enzyme Inhibition Activities. Synth. Commun. 2018, 48, 1148–1163. DOI: 10.1080/00397911.2018.1437183.
  • Che, J-y.; Xu, X-y.; Tang, Z-l.; Gu, Y-c.; Shi, D-q Synthesis and Herbicidal Activity Evaluation of Novel α-Aminophosphonate Derivatives Containing a Uracil Moiety. Bioorg. Med. Chem. Lett. 2016, 26, 1310–1313. DOI: 10.1016/j.bmcl.2016.01.010.
  • Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. New Hybrid Transition Slate Analog Inhibitors of HIV Protease with Peripheric C2-Symmetry. Tetahedron Lett. 1992, 33, 6625–6628. DOI: 10.1016/S0040-4039(00)61002-X.
  • Antipin, I. S.; Stoikov, I. I.; Konovalov, A. I. α-Aminophosphonates: Effective Carriers for the Membrane Transport of Biorelevant Species. Phosphorus Sulfur Silicon 1999, 144, 347–350. DOI: 10.1080/10426509908546252.
  • Keglevich, G.; Bálint, E. The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules 2012, 17, 12821–12835. DOI: 10.3390/molecules171112821.
  • Ranu, B. C.; Hajra, A.; Jana, U. General Procedure for the Synthesis of α-Amino Phosphonates from Aldehydes and Ketones Using Indium (III) Chloride as a Catalyst. Org. Lett. 1999, 1, 1141–1143. DOI: 10.1021/ol990079g.
  • Laschat, S.; Kunz, H. Carbohydrates as Chiral Templates: Stereoselective Synthesis of (R) and (S)-α-Aminophosphonic Acid Derivatives. Synthesis 1992, 1992, 90–95. DOI: 10.1055/s-1992-34155.
  • Ha, H. J.; Nam, G. S. An Efficient Synthesis of Anilinobenzyl Phosphonates. Synth. Commun. 1992, 22, 1143–1148. DOI: 10.1080/00397919208021098.
  • Bhagat, S.; Chakraborti, A. K. An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik-Fields Reaction) for the Synthesis of α-Aminophosphonates Catalyzed by Magnesium Perchlorate. J. Org. Chem. 2007, 72, 1263–1270. DOI: 10.1021/jo062140i.
  • (a) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Metal Triflate-Catalyzed One-Pot Synthesis of α-Aminophosphonates from Carbonyl Compounds in the Absence of Solvent. Synthesis 2004, 16, 2692–2696. DOI: 10.1055/s-2004-831251. (b) Sobhani, S.; Tashrifi, Z. Al(OTf)3 as an Efficient Catalyst for One-Pot Synthesis of Primary Diethyl 1-Aminophosphonates under Solvent-Free Conditions. Synth. Commun. 2008, 39, 120–131. DOI: 10.1080/00397910802369695. (c) Essid, I.; Touil, S. Efficient and Green One-Pot Multi-Component Synthesis of α-Aminophosphonates Catalyzed by Zinc Triflate. COS 2017, 14, 272–278. DOI: 10.2174/1570179413666160624092814.
  • Sun, P. P.; Hu, Z. X.; Huang, Z. H. Gallium Triiodide Catalyzed Organic Reaction: A Convenient Synthesis of α-Amino Phosphonates. Synth. Commun. 2004, 34, 4293–4299. DOI: 10.1081/SCC-200039361.
  • Jafari, A. A.; Nazarpour, M.; Abdollahi-Alibeik, M. CeCl3.7H2O-Catalyzed One-Pot Kabachnik–Fields Reaction: A Green Protocol for Three-Component Synthesis of α-Aminophosphonates. Heteroatom Chem. 2010, 21, 397–403. DOI: 10.1002/hc.20635.
  • Reddy, Y. T.; Reddy, P. N.; Kumar, B. S.; Sreenivasulu, N.; Rajitha, B. VCl3 Catalyzed Efficient One-Pot Synthesis of α-Aminophosphonates. Heterocyclic Commun. 2005, 11, 153–156. DOI: 10.1515/HC.2005.11.2.153.
  • Bhagat, S.; Chakraborti, A. K. Zirconium(IV) Compounds as Efficient Catalysts for Synthesis of α-Aminophosphonates. J. Org. Chem. 2008, 73, 6029–6032. DOI: 10.1021/jo8009006.
  • Manabe, K.; Kobayashi, S. Facile Synthesis of α-Aminophosphonates in Water Using a Lewis Acid-Surfactant-Combined Catalyst. Chem. Commun. 2000, 8, 669–670. DOI: 10.1039/b000319k.
  • Salim Mohammed, M.; Bakhtiarian, M.; Bahrami, K. Mesoporous Titania-Ceria Mixed Oxide (MTCMO): a Highly Efficient and Reusable Heterogeneous Nanocatalyst for One-Pot Synthesis of β-Phosphonomalonates via a Cascade Knoevenagel–phospha-Michael Addition Reaction. J. Exp. Nano. Sci. 2020, 15, 54–69. DOI: 10.1080/17458080.2020.1716968.
  • Adamczyk-Woźniak, A.; Gozdalik, J. T.; Wieczorek, D.; Madura, I. D.; Kaczorowska, E.; Brzezińska, E.; Sporzyński, A.; Lipok, J. Synthesis, Properties and Antimicrobial Activity of 5-Trifluoromethyl-2-Formylphenylboronic Acid. Molecules 2020, 25, 799. DOI: 10.3390/molecules25040799.
  • Dinari, M.; Fardmanesh, K.; Maleki, M. H.; Asadi, P. Synthesis, Characterization and Antimicrobial Properties of New L-Cysteine Based Chiral Aromatic Polyamides. Polym. Bull. 2022, 79, 11103–11117. DOI: 10.1007/s00289-021-04020-1.
  • Sandeep, K. G.; Venkataramaiah, C.; Rajendra, W. In Silico Evaluation of Benzo (f) Chromen-3-One as a Potential Inhibitor of NF-κB: A Key Regulatory Molecule in Inflammation Mediated Pathogenesis of Diabetes, Alzheimer’s, and Cancer. J. Appl. Pharmaceu. Sci. 2018, 8, 157–164. DOI: 10.7324/JAPS.2018.81218.
  • Bugg, T. D.; Braddick, D.; Dowson, C. G.; Roper, D. I. Bacterial Cell Wall Assembly: Still an Attractive Antibacterial Target Trends. Trends Biotechnol. 2011, 29, 167–173. DOI: 10.1016/j.tibtech.2010.12.006.
  • Henrich, E.; Ma, Y.; Engels, I.; Munch, D.; Otten, C.; Schneider, T.; Henrichfreise, B.; Sahl, H.; Dotsch, V.; Bernhard, F. Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of Lipid II Synthesis Pathway. J. Biol. Chem. 2016, 291, 2535–2546. DOI: 10.1074/jbc.M115.664292.
  • Ibrahim, M. A. A. Molecular Mechanical Study of Halogen Bonding in Drug Discovery. J Comput. Chem. 2011, 32, 2564–2574. DOI: 10.1002/jcc.21836.
  • Auffinger, P.; Hays, F. A.; Westhof, E.; Shing Ho, P. Halogen Bonds in Biological Molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794. DOI: 10.1073/pnas.0407607101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.