Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 5
64
Views
0
CrossRef citations to date
0
Altmetric
Articles

Friedländer reactions for novel annulated pyridotriazolothiazolopyridines: Synthetic approaches and antimicrobial evaluation

&
Pages 406-415 | Received 14 Dec 2023, Published online: 23 Jan 2024

References

  • Mahmoud, N. F. H.; Balamon, M. G. Synthesis of various fused heterocyclic rings from thiazolopyridine and their pharmacological and antimicrobial evaluations. Journal of Heterocyclic Chem. 2020, 57, 3056–3070. DOI: 10.1002/jhet.4011.
  • Łowicki, D.; Przybylski, P. Cascade synthetic strategies opening access to medicinal-relevant aliphatic 3- and 4-membered n-heterocyclic scaffolds. Eur. J. Med. Chem. 2022, 238, 114438. DOI: 10.1016/j.ejmech.2022.114438.
  • Muangmora, R.; Roongraung, K.; Kemacheevakul, P.; Chuangchote, S. Photocatalytic degradation of pharmaceuticals from water using nitrogen-doped titanium dioxide coated on fiberglass cloth. J. Cleaner Prod. 2023, 397, 136487. DOI: 10.1016/j.jclepro.2023.136487.
  • Obaid, R. J.; Mughal, E. U.; Naeem, N.; Al-Rooqi, M. M.; Sadiq, A.; Jassas, R. S.; Moussa, Z.; Ahmed, S. A. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem. 2022, 120, 250–259. DOI: 10.1016/j.procbio.2022.06.009.
  • Stanovnik, B. Enaminone, enaminoesters, and related compounds in the metal-free synthesis of pyridines and fused pyridines. Eur. J. Org. Chem. 2019, 2019, 5120–5132. DOI: 10.1002/ejoc.201900797.
  • Dowarah, J.; Hazarika, B.; Sran, B. S.; Khiangte, D.; Singh, V. P. Design, synthesis, structural investigation and binding study of 2-pyridone-based pharmaceutical precursor with DNA. J. Mol. Struct. 2023, 1282, 135182. DOI: 10.1016/j.molstruc.2023.135182.
  • Najafi, Z.; Alaei, M.; Bahmani, A.; Akbarzadeh, T.; Hariri, R.; Chehardol, G. Fused 1,4-dihydropyridines and their corresponding pyridines: synthesis, molecular modeling and cholinesterase inhibition. Selected Chem. 2023, 8, e202300219. DOI: 10.1002/slct.202300219.
  • Saleem, F.; Haider, M.; Khan, K. M.; Özil, M.; Baltaş, N.; Ul-Haq, Z.; Qureshi, U.; Salar, U.; Taha, M.; Hameed, S.; Ullah, N. Regioselective syntheses of 2-oxopyridine carbonitrile derivatives and evaluation for antihyperglycemic and antioxidant potential. Int. J. Biol. Macromol. 2023, 241, 124589. DOI: 10.1016/j.ijbiomac.2023.124589.
  • Dey, S.; Bajaj, S. O. Promising anticancer drug thapsigargin: a perspective toward the total synthesis. Synth. Commun. 2018, 48, 1–13. DOI: 10.1080/00397911.2017.1386789.
  • Zhang, W.; Chen, J.; Du, X. 2-Phenylpyridine derivatives: synthesis and insecticidal activity against mythimna separata, aphis craccivora, and tetranychus cinnabarinus. Molecules 2023, 28, 1567. DOI: 10.3390/molecules28041567.
  • Xia, J.; Xin, L.; Li, J.; Tian, L.; Wu, K.; Zhang, S.; Yan, W.; Li, H.; Zhao, Q.; Liang, C. Discovery of quaternized pyridine-thiazole-pleuromutilin derivatives with broad-spectrum antibacterial and potent anti-MRSA activity. J. Med. Chem. 2023, 66, 5061–5078. DOI: 10.1021/acs.jmedchem.0c01328.
  • Ma, Z.; Han, X.; Yang, Y.; Fu, A.; Li, G. Design and synthesis of 2,6-dihalogenated stilbene derivatives as potential anti-inflammatory and antitumor agents. Fitoterapia 2023, 167, 105493. DOI: 10.1016/j.fitote.2023.105507.
  • Shulgau, Z.; Stalinskaya, A.; Sergazy, S.; Zhulikeyeva, A.; Kamyshanskiy, Y.; Gulyayev, A.; Ramankulov, Y.; Kulakov, I. Synthesis, hemorheological and antifibrotic activity of newly synthesized 3-acetyl-2,4,6-trimethylpyridine derivatives. Arab. J. Chem. 2023, 16, 104821. DOI: 10.1016/j.arabjc.2023.104821.
  • Lv, Z.; Sheng, C.; Wang, T.; Zhang, Y.; Liu, J.; Feng, J.; Sun, H.; Zhong, H.; Niu, C.; Li, K. Design, synthesis, and antihepatitis B virus activities of novel 2-pyridone derivatives. J. Med. Chem. 2010, 53, 660–668. DOI: 10.1021/jm901237x.
  • Brotzel, F.; Kempf, B.; Singer, T.; Zipse, H.; Mayr, H. Nucleophilicities and carbon basicities of pyridines. Chemistry 2007, 13, 336–345. DOI: 10.1002/chem.200600941.
  • Suku, S.; Ravindran, R. Synthesis, characterization, biological and dielectric studies of a proton transfer compound of pyridine-2,6-dicarboxylic acid with 1H-benzimidazole-2-amine and its vanadium and iron complexes. J. Mol. Struct 2023, 1283, 135217. DOI: 10.1016/j.molstruc.2023.135217.
  • Portero, C. E.; Han, Y.; Marchán-Rivadeneira, M. R. Advances on the biosynthesis of pyridine rings. Eng. Microbio. 2023, 3, 100064. DOI: 10.1016/j.engmic.2022.100064.
  • Hussain, Z.; Ibrahim, M. A.; El-Gohary, N. M.; Badran, A. Synthesis, characterization, DFT, QSAR, antimicrobial, and antitumor studies of some novel pyridopyrimidines. J. Mol. Struct. 2022, 1269, 133870. DOI: 10.1016/j.molstruc.2022.133870.
  • Alshaye, N. A.; Ibrahim, M. A. 4-Amino-3-formylcoumarin as building block for construction of novel heteroannulated coumarins: synthesis, characterization and antimicrobial evaluation. Heterocycles 2022, 104, 2179–2194. DOI: 10.3987/COM-2214748.
  • Ibrahim, M. A.; El-Gohary, N. M.; Said, S. Synthesis of heteroannulated chromeno[2,3-b]Pyridines: DBU catalyzed reactions of 2-amino-6-methylchromone-3-carboxaldehyde with some heterocyclic enols and enamines. J. Heterocyclic Chem. 2016, 53, 117–120. DOI: 10.1002/jhet.2285.
  • Ibrahim, M. A. Synthesis and characterization of New Chromeno[2, 3-b]Pyridines via the friedländer reactions of 8-allyl-2-amino-4-Oxo-4H-chromene-3-carboxaldehyde. Eur. J. Chem. 2010, 1, 124–128. DOI: 10.5155/eurjchem.1.2.124-128.75.
  • Alshareef, F. M.; Al-Harbi, S. A.; Allehyani, E. S.; Abdullah, O.; Ibrahim, M. A. Design, synthesis and antimicrobial activity of heteroannulated chromeno[3′,2′: 5,6]Pyrido[2,3- d][1,3]Thiazolo[3,2-a]Pyrimidines. Synth. Commun, 2024, 54, 133–143. DOI: 10.1080/00397911.2023.2287654.
  • Ghosh, S.; Krishnan, J.; Karthik, V.; Rana, A.; Dhakshinamoorthy, A.; Biswas, S. Friedlander condensation reaction catalyzed by hafnium-based metal-organic framework. Mol. Cat. 2022, 533, 112748. DOI: 10.1016/j.mcat.2022.112748.
  • Chen, X.; Ren, C.; Xu, X.; Shao, X.; Li, Z. Direct one-pot synthesis of 3-nitroquinolin-2(1H)-one via H2O/AcOH system: an improvement to classical friedlander reaction. Tetrahedron Lett. 2017, 58, 1433–1436. DOI: 10.1016/j.tetlet.2017.01.092.
  • Zhu, Y.; Chen, L.; Zhao, J.; Sun, Q.; Yang, W.; Fu, H.; Ma, M. Synthesis of quinoline derivatives by friedländer reaction catalyzed by ruthenium complexes of substituted 8-hydroxyquinoline. Chinese J. Org. Chem. 2023, 43, 2528–2542. DOI: 10.6023/cjoc202210036.
  • Khan, I.; Khan, A.; Halim, S. A.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4] triazoles as efficient inhibitors of urease: a biochemical and in silico approach. Int. J. Biol. Macromol. 2020, 142, 345–354. DOI: 10.1016/j.ijbiomac.2019.09.105.
  • Abdelazeem, A. H.; Alqahtani, A. M.; Omar, H. A.; Bukhari, S. N. A.; Gouda, A. M. Synthesis, biological evaluation and kinase profiling of novel S-Benzo[4,5] Thiazolo[2,3-c][1,2,4]triazole derivatives as cytotoxic agents with apoptosis-inducing activity. J. Mol. Struct. 2020, 1219, 128567. DOI: 10.1016/j.molstruc.2020.128567.
  • Aggarwal, R.; Hooda, M.; Kumar, P.; Torralba, M. C. Visible-light-mediated regioselective synthesis of novel thiazolo[3,2-b][1,2,4]triazoles: advantageous synthetic application of aqueous conditions. Org. Biomol. Chem. 2022, 20, 584–595. DOI: 10.1039/d1ob02194j.
  • Alshaye, N. A.; Ibrahim, M. A. Synthesis and characterization of some novel heteroannulated chromeno[4,3-b]quinolines. Heterocycles 2023, 106, 117–134. DOI: 10.3987/COM-22-14770.
  • Alshaye, N. A.; Ibrahim, M. A. Synthesis, characterization and biological evaluation of the novel chromenopyridothiazolopyrimidines and chromenopyridopyrimidothiazolopyrimidines. Synth. Commun 2023, 53, 332–344. DOI: 10.1080/00397911.2023.2172684.
  • Badran, A.; Ibrahim, M. A. Synthesis, spectral characterization, DFT and in Silico ADME studies of the novel pyrido[1,2-a]Benzimidazoles and pyrazolo[3,4-b]pyridines. J. Mol. Struct. 2023, 1274, 134454. DOI: 10.1016/j.molstruc.2022.134454.
  • Ibrahim, M. A. Synthesis and characterization of the novel heteroannulated chromeno[2,3-d]pyrimidines and chromeno[2,3-d][1,3]Thiazolo[3,2-a] pyrimidines. J. Heterocyclic Chem. 2022, 59, 2076–2083. DOI: 10.1002/jhet.4542.
  • Ibrahim, M. A.; Badran, A. Novel heteroannulated chromeno[2,3-b]Pyridines and related compounds using 6-methylchromone-3-carbonitrile. Heterocycles 2022, 104, 707–722. DOI: 10.3987/COM-21-14607.
  • Badran, A.; Ahmed, A.; Nabeel, A. I.; Ibrahim, M. A. Ring Opening Ring Closure Reactions with 5,9-Diethyl-7-(Chromon-3-yl)-7-Hydroquinolino[3′,4′:5,6]Pyrano [3,2-c]Quinoline-6,8(5H,9H)-Dione with Some 1,2-binucleophiles: synthesis, characterization, DFT Study and Biological Activity. J. Mol. Struct 2024, 1298, 137030. DOI: 10.1016/j.molstruc.2023.137030.
  • Alshaye, N. A.; Ibrahim, M. A. First approaches for the novel Pyrido[1’’,2’’:2’,3’][1,2,4]Triazolo[5’,1’,2,3][1,3]Thiazolo[4,5-b]Pyridines: synthesis, characterization and antimicrobial efficiency. Polycycl. Arom. Compds. 2023, 1–15. DOI: 10.1080/10406638.2023.2270555.
  • Ibrahim, S. S.; Allimony, H. A.; Abdel-Halim, A. M.; Ibrahim, M. A. Synthesis and reactions of 8-allylchromone-3-carboxaldehyde. ARKIVOC 2010, 2009, 28–38. DOI: 10.3998/ark.5550190.0010.e03.
  • Atta-Ur-Rahman, M. I. C.; Thomsen, W. J. Bioassay Techniques for Drug Development, P 16, The Netherlands: Harwood Academic Publishers, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.