Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 11
91
Views
1
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Recent advances in carbohydrate polymers as a catalyst for organic synthesis: An update

, , , &
Pages 853-880 | Received 12 Jan 2024, Published online: 09 Apr 2024

References

  • Baranwal, J.; Barse, B.; Fais, A.; Delogu, G. L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel) 2022, 14, 983. DOI: 10.3390/polym14050983.
  • Naveen, K.; Ji, H.; Kim, T. S.; Kim, D.; Cho, D. H. C3-Symmetric Zinc Complexes as Sustainable Catalysts for Transforming Carbon Dioxide into Mono- and Multi-Cyclic Carbonates. Appl. Catal, B 2021, 280, 119395. DOI: 10.1016/j.apcatb.2020.119395.
  • Jiménez-Gómez, C. P.; Cecilia, J. A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 25. DOI: 10.3390/molecules25173981.
  • Schneiderman, D. K.; Hillmyer, M. A. 50th Anniversary Perspective: There is a Great Future in Sustainable Polymers. Macromolecules 2017, 50, 3733–3749. DOI: 10.1021/acs.macromol.7b00293.
  • Zhou, C.-H. C.; Beltramini, J. N.; Fan, Y.-X.; Lu, G. Q. M. Chemoselective Catalytic Conversion of Glycerol as a Biorenewable Source to Valuable Commodity Chemicals. Chem. Soc. Rev. 2008, 37, 527–549. DOI: 10.1039/b707343g.
  • Bode, J. W.; Mahatthananchai, J.; Dumas, A. M. Catalytic Selective Synthesis. Angew. Chem. Int. Ed. Engl. 2012, 51, 10954–10990. DOI: 10.1002/anie.201201787.
  • Liu, F.; Ma, C.; Gao, Y.; McClements, D. J. Food-Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 76–95. DOI: 10.1111/1541-4337.12229.
  • Aguilera, D. A.; Tanchoux, N.; Fochi, M.; Bernardi, L. Blue Chemistry. Marine Polysaccharide Biopolymers in Asymmetric Catalysis: Challenges and Opportunities. Eur. J. Org. Chem. 2020, 2020, 3779–3795. DOI: 10.1002/ejoc.201901924.
  • Thakur, V.; Guleria, A.; Kumar, S.; Sharma, S.; Singh, K. Recent Advances in Nanocellulose Processing, Functionalization and Applications: A Review. Mater. Adv. 2021, 2, 1872–1895. DOI: 10.1039/D1MA00049G.
  • Hu, L.; Lin, L.; Wu, Z.; Zhou, S.; Liu, S. Chemocatalytic Hydrolysis of Cellulose into Glucose over Solid Acid Catalysts. Appl. Catal, B 2015, 174-175, 225–243. DOI: 10.1016/j.apcatb.2015.03.003.
  • De Souza, S. P.; Junior, I. I.; Silva, G. M. A.; Miranda, L. S. M.; Santiago, M. F.; Leung-Yuk Lam, F.; Dawood, A.; Bornscheuer, U. T.; De Souza, R. O. M. A. Cellulose as an Efficient Matrix for Lipase and Transaminase Immobilization. RSC Adv. 2016, 6, 6665–6671. DOI: 10.1039/C5RA24976G.
  • EL Kaim Billah, R.; Zaghloul, A.; Bahsis, L.; Oladoja, N. A.; Azoubi, Z.; Taoufyk, A.; Majdoubi, H.; Algethami, J. S.; Soufiane, A.; López-Maldonado, E. A.; et al. Multifunctional Biocomposites Based on Cross-Linked Shrimp Waste-Derived Chitosan Modified Zn2+@Calcium Apatite for the Removal of Methyl Orange and Antibacterial Activity. Mater. Today Sustainability 2024, 25, 100660. DOI: 10.1016/j.mtsust.2023.100660.
  • Carneiro, L. A. B. C.; Costa-Silva, T. A.; Souza, C. R. F.; Bachmann, L.; Oliveira, W. P.; Said, S. Immobilization of Lipases Produced by the Endophytic Fungus Cercospora Kikuchii on Chitosan Microparticles. Braz. arch. biol. technol. 2014, 57, 578–586. DOI: 10.1590/S1516-8913201402174.
  • Baudoux, J.; Perrigaud, K.; Madec, P. J.; Gaumont, A. C.; Dez, I. Development of New SILP Catalysts Using Chitosan as Support. Green Chem. 2007, 9, 1346–1351. DOI: 10.1039/b709226a.
  • Dhakshinamoorthy, A.; Jacob, M.; Vignesh, N. S.; Varalakshmi, P. Pristine and Modified Chitosan as Solid Catalysts for Catalysis and Biodiesel Production: A Minireview. Int. J. Biol. Macromol. 2021, 167, 807–833. DOI: 10.1016/j.ijbiomac.2020.10.216.
  • Bezerra, C. S.; De Farias Lemos, C. M. G.; De Sousa, M.; Gonçalves, L. R. B. Enzyme Immobilization onto Renewable Polymeric Matrixes: Past, Present, and Future Trends. J. of Applied Polymer Sci. 2015, 132, 1–15. DOI: 10.1002/app.42125.
  • Neves, F. B.; Zanin, L. L.; Pereira, R. R.; Júnior, J. O. C. S.; Costa, R. M. R.; Porto, A. L. M.; Yoshioka, S. A.; Oliveira, A. N d.; Jimenez, D. E. Q.; Ferreira, I. M. Chitin and Silk Fibroin Biopolymers Modified by Oxone: Efficient Heterogeneous Catalysts for Knoevenagel Reaction. Catalysts 2022, 12, DOI: 10.3390/catal12080904.
  • Sedayu, B. B.; Cran, M. J.; Bigger, S. W. A Review of Property Enhancement Techniques for Carrageenan-Based Films and Coatings. Carbohydr. Polym. 2019, 216, 287–302. DOI: 10.1016/j.carbpol.2019.04.021.
  • Gamage, A.; Liyanapathiranage, A.; Manamperi, A.; Gunathilake, C.; Mani, S.; Merah, O.; Madhujith, T. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability (Switzerland) 2022, 14, DOI: 10.3390/su14106085.
  • Zucca, P.; Fernandez-Lafuente, R.; Sanjust, E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016, 21, 1577. DOI: 10.3390/molecules21111577.
  • Maleki, A.; Hassanzadeh-Afruzi, F.; Varzi, Z.; Esmaeili, M. S. Magnetic Dextrin Nanobiomaterial: An Organic-Inorganic Hybrid Catalyst for the Synthesis of Biologically Active Polyhydroquinoline Derivatives by Asymmetric Hantzsch Reaction. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110502. DOI: 10.1016/j.msec.2019.110502.
  • Bachman, L. From the SAGE Social Science Collections. All Rights. Hisp. J. Behav. Sci. 1987, 9, 20–33.
  • Dohendou, M.; Pakzad, K.; Nezafat, Z.; Nasrollahzadeh, M.; Dekamin, M. G. Progresses in Chitin, Chitosan, Starch, Cellulose, Pectin, Alginate, Gelatin and Gum Based (Nano)Catalysts for the Heck Coupling Reactions: A Review. Int. J. Biol. Macromol. 2021, 192, 771–819. DOI: 10.1016/j.ijbiomac.2021.09.162.
  • Khazaei, A.; Rahmati, S.; Hekmatian, Z.; Saeednia, S.; Green, A. Approach for the Synthesis of Palladium Nanoparticles Supported on Pectin: Application as a Catalyst for Solvent-Free Mizoroki-Heck Reaction. J. Mol. Catal. A: Chem. 2013, 372, 160–166. DOI: 10.1016/j.molcata.2013.02.023.
  • Kumar, R.; Meghwanshi, G. K.; Marcianò, D.; Ullah, S. F.; Bulone, V.; Toffolatti, S. L.; Srivastava, V. Sequence, Structure and Functionality of Pectin Methylesterases and Their Use in Sustainable Carbohydrate Bioproducts: A Review. Int. J. Biol. Macromol. 2023, 244, DOI: 10.1016/j.ijbiomac.2023.125385.
  • Baran, T. Highly Recoverable, Reusable, Cost-Effective, and Schiff Base Functionalized Pectin Supported Pd(II) Catalyst for Microwave-Accelerated Suzuki Cross-Coupling Reactions. Int. J. Biol. Macromol. 2019, 127, 232–239. DOI: 10.1016/j.ijbiomac.2019.01.046.
  • Mohammadi, L.; Heravi, M. M.; Saljooqi, A.; Mohammadi, P. The Preparation of Polyvinyl Imidazole-Functionalized Magnetic Biochar Decorated by Silver Nanoparticles as an Efficient Catalyst for the Synthesis of Spiro-2-Amino-4H-Pyran Compounds. Sci. Rep. 2022, 12, 22281. DOI: 10.1038/s41598-022-25857-0.
  • Sahu, P. K.; Sahu, P. K.; Gupta, S. K.; Agarwal, D. D. Chitosan: An Efficient, Reusable, and Biodegradable Catalyst for Green Synthesis of Heterocycles. Ind. Eng. Chem. Res. 2014, 53, 2085–2091. DOI: 10.1021/ie402037d.
  • Sakthivel, B.; Dhakshinamoorthy, A. Chitosan as a Reusable Solid Base Catalyst for Knoevenagel Condensation Reaction. J. Colloid Interface Sci. 2017, 485, 75–80. DOI: 10.1016/j.jcis.2016.09.020.
  • Rostami, N.; Dekamin, M. G.; Valiey, E.; Fanimoghadam, H. Chitosan-EDTA-Cellulose Network as a Green, Recyclable and Multifunctional Biopolymeric Organocatalyst for the One-Pot Synthesis of 2-Amino-4H-Pyran Derivatives. Sci. Rep. 2022, 12, 8642. 12, DOI: 10.1038/s41598-022-10774-z.
  • Rai, Pragati, Ibad, Afshan, Sagir, Hozeyfa, Siddiqui, I. R., Rahila,. Chitosan-CTAB: An Efficient Aqueous Micellar System for the Sequential One-Pot Synthesis of Highly Functionalized 2-Amino-4H-Pyrans. ChemistrySelect 2016, 1, 1300–1304, DOI: 10.1002/slct.201600003.
  • Rani, D.; Singla, P.; Agarwal, J. ‘Chitosan in Water’ as an Eco-Friendly and Efficient Catalytic System for Knoevenagel Condensation Reaction. Carbohydr. Polym. 2018, 202, 355–364. DOI: 10.1016/j.carbpol.2018.09.008.
  • Anbu, N.; Maheswari, R.; Elamathi, V.; Varalakshmi, P.; Dhakshinamoorthy, A. Chitosan as a Biodegradable Heterogeneous Catalyst for Knoevenagel Condensation between Benzaldehydes and Cyanoacetamide. Catal. Commun. 2020, 138, 105954. DOI: 10.1016/j.catcom.2020.105954.
  • Andrés, J. M.; Maestro, A. Biodegradable Chitosan‐Derived Thioureas as Recoverable Supported Organocatalysts—Application to the Stereoselective Aza‐Henry Reaction. Eur. J. Org. Chem. 2017. 25, 3658-3665. DOI: 10.1002/ejoc.201700582.
  • Beiranvand, R.; Dekamin, M. G. Heliyon Trimesic Acid-Functionalized Chitosan : A Novel and Efficient Multifunctional Organocatalyst for Green Synthesis of Polyhydroquinolines and Acridinediones under Mild Conditions. Heliyon 2023, 9, e16315. DOI: 10.1016/j.heliyon.2023.e16315.
  • Ricci, A.; Bernardi, L.; Gioia, C.; Vierucci, S. Chitosan Aerogel : A Recyclable Heterogeneous Organocatalyst for the Asymmetric Direct Aldol Reaction in Water. Chem. Commun. 2010, 46, 6288–6290. DOI: 10.1039/c0cc01502d.
  • Abdelkawy, M. A.; Aly, E. A.; El-Badawi, M. A.; Itsuno, S. Chitosan-Supported Cinchona Urea : Sustainable Organocatalyst for Asymmetric Michael Reaction. Catal. Commun. 2020, 146, 106132. DOI: 10.1016/j.catcom.2020.106132.
  • Heckel, T.; Konieczna, D. D.; Wilhelm, R. An Ionic Liquid Solution of Chitosan as Organocatalyst. Catalysts 2013, 914–921. DOI: 10.3390/catal3040914.
  • Shaabani, A.; Seyyedhamzeh, M.; Maleki, A.; Rezazadeh, F. Cellulose Sulfuric Acid: An Efficient Biopolymer-Based Catalyst for the Synthesis of Oxazolines, Imidazolines and Thiazolines under Solvent-Free Conditions. Appl. Catal, A 2009, 358, 146–149. DOI: 10.1016/j.apcata.2009.02.005.
  • Khan, T.; Siddiqui, Z. N. Perchloric Acid Modified-Cellulose: A Versatile, Novel and Biodegradable Heterogeneous Solid Acid Catalyst for Single-Pot Synthesis of Novel Bis-Pyran Annulated Heterocyclic Scaffolds under Solvent-Free Conditions. New J. Chem. 2014, 38, 4847–4858. DOI: 10.1039/C4NJ00529E.
  • Shelke, K.; Sapkal, S.; Niralwad, K.; Shingate, B.; Shingare, M. Cellulose Sulphuric Acid as a Biodegradable and Reusable Catalyst for the Knoevenagel Condensation. Open Chem. 2010, 8, 12–18. DOI: 10.2478/s11532-009-0111-2.
  • Dekamin, M. G.; Peyman, S. Z.; Karimi, Z.; Javanshir, S.; Naimi-Jamal, M. R.; Barikani, M. Sodium Alginate: An Efficient Biopolymeric Catalyst for Green Synthesis of 2-Amino-4H-Pyran Derivatives. Int. J. Biol. Macromol. 2016, 87, 172–179. DOI: 10.1016/j.ijbiomac.2016.01.080.
  • Dekamin, M. G.; Karimi, Z.; Latifidoost, Z.; Ilkhanizadeh, S.; Daemi, H.; Naimi-Jamal, M. R.; Barikani, M. Alginic Acid: A Mild and Renewable Bifunctional Heterogeneous Biopolymeric Organocatalyst for Efficient and Facile Synthesis of Polyhydroquinolines. Int. J. Biol. Macromol. 2018, 108, 1273–1280. DOI: 10.1016/j.ijbiomac.2017.11.050.
  • Oudghiri, K.; Belattmania, Z.; Elmouli, H.; Guesmi, S.; Bentiss, F.; Sabour, B.; Bahsis, L.; Taourirte, M. Mechanistic Insights into the Selective Synthesis of 4H-Pyran Derivatives on-Water Using Naturally Occurring Alginate from Sargassum Muticum: Experimental and DFT Study. Gels 2022, 8, 713. DOI: 10.3390/gels8110713.
  • Aguilera, D. A.; Spinozzi Di Sante, L.; Pettignano, A.; Riccioli, R.; Roeske, J.; Albergati, L.; Corti, V.; Fochi, M.; Bernardi, L.; Quignard, F.; Tanchoux, N. Adsorption of a Chiral Amine on Alginate Gel Beads and Evaluation of Its Efficiency as Heterogeneous Enantioselective Catalyst. Eur. J. Org. Chem. 2019, 2019, 3842–3849. DOI: 10.1002/ejoc.201900247.
  • Ilkhanizadeh, S.; Khalafy, J.; Dekamin, M. G. Sodium Alginate: A Biopolymeric Catalyst for the Synthesis of Novel and Known Polysubstituted Pyrano[3,2-c]Chromenes. Int. J. Biol. Macromol. 2019, 140, 605–613. DOI: 10.1016/j.ijbiomac.2019.08.154.
  • Vekariya, R. H.; Patel, K. D.; Patel, H. D. Starch-Sulfuric Acid (SSA) as a Bio-Degradable and Recyclable Solid Acid Catalyst Carbonitriles. Iran J. Org. Chem. 2015, 7, 1581–1589.
  • Hazeri, N.; Maghsoodlou, M. T.; Mir, F.; Kangani, M.; Saravani, H.; Molashahi, E. An Efficient One-Pot Three-Component Synthesis of Tetrahydrobenzo[b]Pyran and 3, 4-Dihydropyrano[c]Chromene Derivatives Using Starch Solution as Catalyst. Cuihua Xuebao/Chin. J. Cataly. 2014, 35, 391–395. DOI: 10.1016/s1872-2067(14)60003-6.
  • Vekariya, R. H.; Patel, K. D.; Patel, H. D. An Efficient Protocol for the One-Pot Four-Component Synthesis of 6-Amino-1,4-Dihydropyrano[2,3-c]-Pyrazole-5-Carbonitrile Derivatives Using Starch Solution as a Reaction Media. Indian J. Chem. B Organ. Med. Chem. 2018, 57B, 576–582.
  • Amiri-Khamakani, Z.; Hassanzadeh-Afruzi, F.; Maleki, A. Magnetized Dextrin: Eco-Friendly Effective Nanocatalyst for the Synthesis of Dihydropyrano[2,3-c]Pyrazole Derivatives. ECSOC-24 2021, 101. DOI: 10.3390/ecsoc-24-08285.
  • Asheri, O.; Mostafa Habibi-Khorassani, S.; Shahraki, M. Mechanistic Studies on the Three Component Synthesis of Tetrahydrobenzo [b]Pyran Catalyzed by Agar. COCAT. 2015, 3, 52–59. DOI: 10.2174/2213337202666150716171241.
  • Shinde, S.; Rashinkar, G.; Salunkhe, R. DABCO Entrapped in Agar-Agar: A Heterogeneous Gelly Catalyst for Multi-Component Synthesis of 2-Amino-4H-Chromenes. J. Mol. Liq. 2013, 178, 122–126. DOI: 10.1016/j.molliq.2012.10.019.
  • Pourjavadi, A.; Hosseini, S. H.; Fakoorpoor, S. M. Ionic Modified Crosslinked Salep : A Highly Loaded and Efficient Heterogeneous Organocatalyst. Carbohydr. Polym. 2013, 92, 2252–2256. DOI: 10.1016/j.carbpol.2012.12.010.
  • Mohamadpour, F. Pectin as a Natural Biopolymer Catalyst Promoted Green Synthesis of Dihydropyrano[2,3-c]Pyrazole Derivatives in Aqueous Ethanol Media. Ind. J. Chem. (IJC) 2022, 61, 405–410. DOI: 10.56042/ijc.v61i4.62560.
  • Bayat, M. Modi Fi Ed Kappa-Carrageenan as a Heterogeneous Green Catalyst for the Synthesis of Nitrogen and Sulfur-Containing Indenone-Fused Heterocyclic Compounds 2018, DOI: 10.1002/jhet.3083.
  • Hosseinikhah, S. S.; Bi, B.; Mirjalili, F.; Salehi, N.; Bamoniri, A. RSC Advances. 2020, 40508–40513. DOI: 10.1039/d0ra07199d.
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Starch, Cellulose, Pectin, Gum, Alginate, Chitin and Chitosan Derived (Nano) Materials for Sustainable Water Treatment: A Review. 2022, DOI: 10.1016/j.carbpol.2020.116986.
  • Safari, J.; Abedi-Jazini, Z.; Zarnegar, Z.; Sadeghi, M. Nanochitosan: A Biopolymer Catalytic System for the Synthesis of 2-Aminothiazoles. Catal. Commun. 2016, 77, 108–112. DOI: 10.1016/j.catcom.2016.01.007.
  • Xiao, X.; Shao, Z.; Yu, L. A Perspective of the Engineering Applications of Carbon-Based Selenium-Containing Materials. Chin. Chem. Lett. 2021, 32, 2933–2938. DOI: 10.1016/j.cclet.2021.03.047.
  • Habibi-Khorassani, S.; Shahraki, M.; Ebraiimi, A.; Pourpanah, S. S. Kinetic Aspects of Tetrahydrobenzo[b]Pyran Formation in the Presence of Fructose as a Green Catalyst: A Mechanistic Investigation. Physical Chemistry Research 2016, 4, 379–390. DOI: 10.22036/pcr.2016.14733.
  • Pourpanah, S. S.; Habibi-Khorassani, S. M.; Shahraki, M. Fructose-Catalyzed Synthesis of Tetrahydrobenzo[b]Pyran Derivatives: Investigation of Kinetics and Mechanism. Chin. J. Catal. 2015, 36, 757–763. DOI: 10.1016/S1872-2067(14)60302-8.
  • Yang, Y.; Fan, X.; Cao, H.; Chu, S.; Zhang, X.; Xu, Q.; Yu, L. Fabrication of Se/C Using Carbohydrates as Biomass Starting Materials: An Efficient Catalyst for Regiospecific Epoxidation of β-Ionone with Ultrahigh Turnover Numbers. Catal. Sci. Technol. 2018, 8, 5017–5023. DOI: 10.1039/C8CY01413B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.