Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 12
40
Views
0
CrossRef citations to date
0
Altmetric
Articles

An efficient synthesis of pyrazolylbarbiturates by three-component reaction between barbituric/thiobarbituric acid, aroylphenylhydrazones and arylglyoxals

&
Pages 1010-1016 | Received 08 Mar 2024, Published online: 01 Jun 2024

References

  • Al-Rasheed, H.; Dahlous, K.; Sharma, A.; Sholkamy, E.; El-Faham, A.; de la Torre, B. G.; Albericio, F. Barbiturate- and Thiobarbituarte-Based s-Triazine Hydrazone Derivatives with Promising Antiproliferative Activities. ACS Omega. 2020, 5, 15805–15811. DOI: 10.1021/acsomega.0c00468.
  • Rathee, P.; Tonk, R. K.; Dalal, A.; Ruhil, M. K.; Kumar, A. Synthesis and Application of Thiobarbituric Acid Derivatives as Antifungal Agents. Cell Mol. Biol. 2016, 62, 1000141.
  • Mobinikhaledi, A.; Kalhor, M. Synthesis and Biological Activity of Some Oxo- and Thioxopyrimidines. Int. J. Drug Dev. Res. 2010, 2, 268–272.
  • Figueiredo, J.; Serrano, J. L.; Cavalheiro, E.; Keurulainen, L.; Kauhaluomac, J.; Yli-Moreira, V. M.; Ferreira, S.; Domingues, F. C.; Silvestre, S.; Almeida, P. Trisubstituted Barbiturates and Thiobarbiturates: Synthesis and Biological Evaluation as Xanthine Oxidase Inhibitors, Antioxidants, Antibacterial and anti-Proliferative Agents. Eur. J. Med. Chem. 2018, 143, 829–842. DOI: 10.1016/j.ejmech.2017.11.070.
  • Mohamed, N. R.; El-Saidi, M. M. T.; Ali, Y. M.; Elnagdi, M. H. Utility of 6-Amino-2-Thiouracil as a Precursor for the Synthesis of Bioactive Pyrimidine Derivatives. Bioorg. Med. Chem. 2007, 15, 6227–6235. DOI: 10.1016/j.bmc.2007.06.023.
  • Ziarani, G. M.; Aleali, F.; Lashgari, N. Recent Applications of Barbituric Acid in Multicomponent Reactions. RSC Adv. 2007, 6, 50895–50922.
  • Li, J.; Shi, W.; Yang, W.; Kang, Z.; Zhang, M.; Song, L. First Synthesis of Unexpected Functionalized Trifluoromethylated 8-Oxa-2,4-Diazaspiro[5.5]Undecanes via One-Pot MCRs. RSC Adv. 2014, 4, 29549–29554. DOI: 10.1039/C4RA03199G.
  • Khalafi-Nezhad, A.; Panahi, F. Synthesis of New Dihydropyrimido [4, 5-b] Quinolinetrione Derivatives Using a Four-Component Coupling Reaction. Synthesis 2011, 2011, 984–992. DOI: 10.1055/s-0030-1258446.
  • Soleimani, E.; Ghorbani, S.; Ghasempour, H. R. Novel Isocyanide-Based Three-Component Reaction: A Facile Synthesis of Substituted 1H-Chromeno[2,3-d]Pyrimidine-5-Carboxamides. Tetrahedron 2013, 69, 8511–8515. DOI: 10.1016/j.tet.2013.06.080.
  • Safaei, H. R.; Shekouhy, M.; Rahmanpur, S.; Shirinfeshan, A. Glycerol as a Biodegradable and Reusable Promoting Medium for the Catalyst-Free One-Pot Three Component Synthesis of 4H-Pyrans. Green Chem. 2012, 14, 1696–1704. DOI: 10.1039/c2gc35135h.
  • Deng, J.; Mo, L.-P.; Zhao, F.-Y.; Zhang, Z.-H.; Liu, S.-X. One-Pot, Three-Component Synthesis of a Library of Spirooxindole-Pyrimidines Catalyzed by Magnetic Nanoparticle Supported Dodecyl Benzenesulfonic Acid in Aqueous Media. ACS Comb. Sci. 2012, 14, 335–341. DOI: 10.1021/co3000264.
  • Azzam, S. H. S.; Pasha, M. A. Microwave-Assisted, Mild, Facile, and Rapid One-Pot Three-Component Synthesis of Some Novel Pyrano [2, 3-d] Pyrimidine-2, 4, 7-Triones. Tetrahedron Lett. 2012, 53, 7056–7059. DOI: 10.1016/j.tetlet.2012.10.056.
  • Kazemi-Rad, R.; Azizian, J.; Kefayati, H. Electrogenerated Acetonitrile Anions/Tetrabutylammonium Cations: An Effective Catalytic System for the Synthesis of Novel Chromeno [3′,4′:5,6] Pyrano [2,3-d] Pyrimidines. Tetrahedron Lett. 2014, 55, 6887–6890. DOI: 10.1016/j.tetlet.2014.10.099.
  • Dommaraju, Y.; Prajapati, D. A Highly Efficient Group-Assisted Purification Method for the Synthesis of Poly-Functionalized Pyrimidin-5-yl-Pyrroles via One-Pot Four-Component Domino Reaction. Mol. Divers. 2015, 19, 173–187. DOI: 10.1007/s11030-014-9547-1.
  • Bihani, M.; Bora, P. P.; Bez, G.; Askari, H. A Green Four-Component Synthesis of Zwitterionic Alkyl/Benzyl Pyrazolyl Barbiturates and Their Photophysical Studies. Mol. Divers. 2014, 18, 745–757. DOI: 10.1007/s11030-014-9532-8.
  • Bartzatt, R. J. Determination of Barbituric Acid, Utilizing a Rapid and Simple Colorimetric Assay. J. Pharm. Biomed. Anal. 2002, 29, 909–915. DOI: 10.1016/S0731-7085(02)00168-1.
  • McClenaghan, N. D.; Absalon, C.; Bassani, D. M. Facile Synthesis of a Fullerene-Barbituric Acid Derivative and Supramolecular Catalysis of its Photoinduced Dimerization. J. Am. Chem. Soc. 2003, 125, 13004–13005. DOI: 10.1021/ja0372098.
  • Look, S. A.; Burch, M. T.; Fenical, W.; Qi-Tai, Z.; Clardy, J.; Kallolide, A. A New Antiinflammatory Diterpenoid, and Related Lactones from the Caribbean Octocoral Pseudopterogorgia Kallos (Bielschowsky). J. Org. Chem. 1985, 50, 5741–5746. DOI: 10.1021/jo00350a061.
  • Bebernitz, G. R.; Argentieri, G.; Battle, B.; Brennan, C.; Balkan, B.; Burkey, B. F.; Eckhardt, M.; Gao, J.; Kapa, P.; Strohschein, R. J.; et al. The Effect of 1,3-Diaryl-[1H]- Pyrazole-4-Acetamides on Glucose Utilization in ob/ob Mice. J. Med. Chem. 2001, 44, 2601–2611. DOI: 10.1021/jm010032c.
  • Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Befani, O.; Turini, P.; Ortuso, F.; Alcaro, S. Monoamine Oxidase Isoform-Dependent Tautomeric Influence in the Recognition of 3,5-Diaryl Pyrazole Inhibitors. J. Med. Chem. 2007, 50, 425–428. DOI: 10.1021/jm060868l.
  • Baraldi, P. G.; Tabrizi, M. A.; Romagnoli, R.; Fruttarolo, F.; Merighi, S.; Varani, K.; Gessi, S.; Borea, P. A. Pyrazolo[4,3-e]1,2,4- Triazolo[1,5-c]Pyrimidine Ligands, New Tools to Characterize A3 Adenosine Receptors in Human Tumor Cell Lines. Curr. Med. Chem. 2005, 12, 1319–1329. DOI: 10.2174/0929867054020963.
  • Pérez, J.; Riera, L. Pyrazole Complexes and Supramolecular ́ Chemistry. Eur. J. Inorg. Chem. 2009, 2009, 4913–4925. DOI: 10.1002/ejic.200900694.
  • Halcrow, M. A. Pyrazoles and Pyrazolides-Flexible Synthons in Self-Assembly. Dalton Trans. 2009, 12, 2059–2073.
  • Ochi, T.; Jobo-Magari, K.; Yonezawa, A.; Matsumori, K.; Fujii, T. Anti-Inflammatory and Analgesic Effects of a Novel Pyrazole Derivative, FR140423. Eur. J. Pharm. 1999, 365, 259–266. DOI: 10.1016/S0014-2999(98)00868-1.
  • Maggio, B.; Daidone, G.; Raffa, D.; Plescia, S.; Mantione, L.; Cutuli, V. M. C.; Mangano, N. G. Caruso a Synthesis and Pharmacological Study of Ethyl 1-Methyl-5-(Substituted 3,4-dihydro4-Oxoquinazolin-3-yl)-1H-Pyrazole-4-Acetates. Eur. J. Med. Chem. 2001, 36, 737–742. DOI: 10.1016/S0223-5234(01)01259-4.
  • Gökhan-Kelekci, N.; Yabanoglu, Y.; Küpeli, E.; Salgın, U.; Ozgen, O.; Ucar, G.; Yesilada, E.; Kendi, E.; Yesilada, A.; Bilgin, A. A. A New Therapeutic Approach in Alzheimer Disease: Some Novel Pyrazole Derivatives as Dual MAO-B Inhibitors and Antiinflammatory Analgesics. Bioorg. Med. Chem. 2007, 15, 5775–5786. DOI: 10.1016/j.bmc.2007.06.004.
  • Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J. Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4- Methylphenyl)-3-(Trifluoromethyl)-1H-Pyrazol-1-yl]-Benzenesulfonamide (SC-58635, Celecoxib). J. Med. Chem. 1997, 40, 1347–1365. DOI: 10.1021/jm960803q.
  • Rapposelli, S.; Lapucci, A.; Minutolo, F.; Orlandini, E.; Ortore, G.; Pinza, M.; Balsamo, A. Synthesis and COX-2 Inhibitory Properties of N-Phenyl and N-Benzyl-Substituted Amides of 2-(4-Methylsulfonylphenyl)Cyclopent-1-Ene-1-Carboxylic Acid and of Their Pyrazole, Thiophene and Isoxazole Analogs. Farmaco 2004, 59, 25–31. DOI: 10.1016/j.farmac.2003.09.003.
  • Moore, K. W.; Bonner, K.; Jones, E. A.; Emms, F.; Leeson, P. D.; Marwood, R.; Patel, S.; Patel, S.; Rowley, M.; Thomas, S.; Carling, R. W. 4-N-Linked-Heterocyclic Piperidine Derivatives with High Affinity and Selectivity for Human Dopamine D4 Receptors. Bioorg. Med. Chem. Lett. 1999, 9, 1285–1290. DOI: 10.1016/S0960-894X(99)00169-9.
  • Huang, Y. R.; Katzenellenbogen, J. A. Regioselective Synthesis of 1,3,5-Triaryl-4-Alkylpyrazoles: Novel Ligands for the Estrogen Receptor. Org. Lett. 2000, 2, 2833–2836. DOI: 10.1021/ol0062650.
  • Stauffer, S. R.; Huang, Y. R.; Aron, Z. D.; Coletta, C. J.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Triarylpyrazoles with Basic Side Chains: Development of Pyrazole-Based Estrogen Receptor Antagonists. Bioorg. Med. Chem. 2001, 9, 151–161. DOI: 10.1016/S0968-0896(00)00226-1.
  • Dehghanzadeh, F.; Shahrokhabadi, F.; Anary-Abbasinejad, M. A Simple Route for Synthesis of 5-(Furan-3-yl)Barbiturate/Thiobarbiturate Derivatives via a Multi-Component Reaction Between Arylglyoxals, Acetylacetone and Barbituric/Thiobarbituric Acid. Arkivoc 2019, 2019, 133–141. DOI: 10.24820/ark.5550190.p010.837.
  • Latifi, M.; Anary-Abbasinejad, M. One-Pot Synthesis of Stable Phosphorus Ylides by Three-Component Reaction Between Arylglyoxals, Phosphines and Barbituric or Meldrum’s Acid. Arkivoc 2021, 2021, 133–139. DOI: 10.24820/ark.5550190.p011.578.
  • Anary-Abbasinejad, M.; Nejad-Shahrokhabadi, F. Formation of Zwitterionic Salts via Three-Component Reactions of Barbituric/Thiobarbituric Acid, N-Heterocyclic Compounds and Dialkyl Acetylenedicarboxylates. Arkivoc 2019, 2019, 149–157. DOI: 10.24820/ark.5550190.p011.018.
  • Anary-Abbasinejad, M.; Nejad-Shahrokhabadi, F. Reaction of Barbituric/Thiobarbituric Acid with Phosphines or Phosphites and Dialkyl Acetylenedicarboxylates for Synthesis of Phosphorus Zwitterions or Phosphonate Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 660–665. DOI: 10.1080/10426507.2019.1709460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.