Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 12
56
Views
0
CrossRef citations to date
0
Altmetric
Articles

Catalytic synthesis of flavanone without stirring or heating

ORCID Icon, & ORCID Icon
Pages 999-1009 | Received 31 Mar 2024, Published online: 23 May 2024

References

  • Hendriks, C.; Kuenen, J.; Kranenburg, R.; Scholz, Y.; Schaap, M. A Shift in Emission Time Profiles of Fossil Fuel Combustion Due to Energy Transitions Impacts Source Receptor Matrices for Air Quality. Environ. Sci. Process. Impacts. 2015, 17, 510–524. DOI: 10.1039/C4EM00444B.
  • Lewis, A. C. Optimising Air Quality co-Benefits in a Hydrogen Economy: A Case for Hydrogen-Specific Standards for NOx Emissions. Environ. Sci.: Atmos 2021, 1, 201–207. DOI: 10.1039/D1EA00037C.
  • Smith, C. J.; Forster, P. M.; Allen, M.; Fuglestvedt, J.; Millar, R. J.; Rogelj, J.; Zickfeld, K. Current Fossil Fuel Infrastructure Does Not yet Commit us to 1.5 °C Warming. Nat. Commun. 2019, 10, 101. DOI: 10.1038/s41467-018-07999-w.
  • Lee, C.-K. Leucadenone A-D, the Novel Class Flavanone from the Leaves of Melaleuca LeucadendronL. Tetrahedron Lett. 1999, 40, 7255–7259. DOI: 10.1016/S0040-4039(99)01489-6.
  • Uzondu, A. L. E.; Okafo, S. E. Extraction and Formulation of a Herbal Product: The Crude Flavonoid Extract of Garcinia Kola Heckel (Bitter Kola) Seeds into Lozenges. Eur. J. Biomed. Pharm. Sci 2014, 1, 491–501.
  • Tomas-Barberan, F. A.; Clifford, M. N. Flavanones, Chalcones and Dihydrochalcones - Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 2000, 80, 1073–1080. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B.
  • Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S. M. Flavanones: Citrus Phytochemical with Health-Promoting Properties. Biofactors 2017, 43, 495–506. DOI: 10.1002/biof.1363.
  • Khan, M. K.; Dangles, O.; Zill-E-Huma. A Comprehensive Review on Flavanones, the Major Citrus Polyphenols. J. Food Compos Analysis 2014, 33, 85–104. DOI: 10.1016/j.jfca.2013.11.004.
  • He, Q.; Li, S.; Fan, Y.; Liu, Y.; Su, Y.; Zhou, Z.; Zhang, Y.-N.; Li, G.-L.; Rao, L.; Zhang, C.-R. Complex Flavanones from Cryptocarya Metcalfiana and Structural Revision of Oboflavanone A. J. Nat. Prod. 2022, 85, 1617–1625. DOI: 10.1021/acs.jnatprod.2c00279.
  • Milevskaya, V. V.; Prasad, S.; Temerdashev, Z. A. Extraction and Chromatographic Determination of Phenolic Compounds from Medicinal Herbs in the Lamiaceae and Hypericaceae Families: A Review. Microchemical J 2019, 145, 1036–1049. DOI: 10.1016/j.microc.2018.11.041.
  • Moulari, B.; Pellequer, Y.; Lboutounne, H.; Girard, C.; Chaumont, J.-P.; Millet, J.; Muyard, F. Isolation and in Vitro Antibacterial Activity of Astilbin, the Bioactive Flavanone from the Leaves of Harungana Madagascariensis Lam. ex Poir. (Hypericaceae). J. Ethnopharmacol. 2006, 106, 272–278. DOI: 10.1016/j.jep.2006.01.008.
  • Matsuda, H.; Morikawa, T.; Yoshikawa, M. Antidiabetogenic Constituents from Several Natural Medicines. Pure Appl. Chem 2022, 74, 1301–1308. DOI: 10.1351/pac200274071301.
  • Hanáková, Z.; Hošek, J.; Kutil, Z.; Temml, V.; Landa, P.; Vaněk, T.; Schuster, D.; Dall’Acqua, S.; Cvačka, J.; Polanský, O.; Šmejkal, K. Anti-Inflammatory Activity of Natural Geranylated Flavonoids: Cyclooxygenase and Lipoxygenase Inhibitory Properties and Proteomic Analysis. J. Nat. Prod. 2017, 80, 999–1006. DOI: 10.1021/acs.jnatprod.6b01011.
  • Chen, P.; Cao, Y.; Bao, B.; Zhang, L.; Ding, A. Antioxidant Capacity of Typha Angustifolia Extracts and Two Active Flavonoids. Pharm. Biol. 2017, 55, 1283–1288. DOI: 10.1080/13880209.2017.1300818.
  • Wang, G.; Wang, J.-J.; Guan, R.; Du, L.; Gao, J.; Fu, X.-L. Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids. Nutr. Cancer. 2017, 69, 534–554. DOI: 10.1080/01635581.2017.1295090.
  • Pouget, C.; Fagnere, C.; Basly, J.-P.; Habrioux, G.; Chulia, A.-J. Design, Synthesis and Evaluation of 4-Imidazolylflavans as New Leads for Aromatase Inhibition. Bioorg. Med. Chem. Lett. 2002, 12, 2859–2861. DOI: 10.1016/S0960-894X(02)00565-6.
  • Gangopadhyay, A. Natural Flavans and (Iso)Flavanones with Anticancer Activity: A Review. COC. 2021, 25, 1028–1046. DOI: 10.2174/1385272825666210126095118.
  • Khan, A.; Ikram, M.; Hahm, R. J.; Kim, O. M. Antioxidant and anti-Inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders. Antioxidants (Basel) 2020, 9, 609. DOI: 10.3390/antiox9070609.
  • Hartogh, D. J. D.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomol 2019, 9, 99. DOI: 10.3390/biom9030099.
  • Wang, X.; Cao, Y.; Chen, S.; Lin, J.; Bian, J.; Huang, D. Anti-Inflammation Activity of Flavones and Their Structure–Activity Relationship. J. Agric. Food Chem. 2021, 69, 7285–7302. DOI: 10.1021/acs.jafc.1c02015.
  • Biddle, M. M.; Lin, M.; Scheidt, K. A. Catalytic Enantioselective Synthesis of Flavanones and Chromanones. J. Am. Chem. Soc. 2007, 129, 3830–3831. DOI: 10.1021/ja070394v.
  • Chandrasekhar, S.; Vijeender, K.; Reddy, V. K. New Synthesis of Flavanones Catalyzed by L-Proline. Tetrahedron Lett. 2005, 46, 6991–6993. DOI: 10.1016/j.tetlet.2005.08.066.
  • Kumar, A.; Sharma, S.; Tripathi, D. V.; Srivastava, S. Synthesis of Chalcones and Flavanones Using Julia–Kocienski Olefination. Tetrahedron 2010, 66, 9445–9449. DOI: 10.1016/j.tet.2010.09.089.
  • Meng, L.; Wang, J. Recent Progress on the Asymmetric Synthesis of Chiral Flavanones. Synlett 2015, 27, 656–663. DOI: 10.1055/s-0035-1560987.
  • Climent, J.; Corma, A.; Iborra, S.; Primo, J. Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest. J. Catal. 1995, 151, 60–66. DOI: 10.1006/jcat.1995.1008.
  • Sisa, M.; Bonnet, S. L.; Ferreira, D.; Van der Westhuizen, J. H. Photochemistry of Flavonoids. Molecules 2010, 15, 5196–5245. DOI: 10.3390/molecules15085196.
  • Gupta, A.; Jamatia, R.; Patil, R. A.; Ma, Y.-R.; Pal, A. K. Copper Oxide/Reduced Graphene Oxide Nanocomposite-Catalyzed Synthesis of Flavanones and Flavanones with Triazole Hybrid Molecules in One Pot: A Green and Sustainable Approach. ACS Omega. 2018, 3, 7288–7299. DOI: 10.1021/acsomega.8b00334.
  • Tanaka, K.; Sugino, T. Efficient Conversion of 2′-Hydroxychalcones into Flavanones and Flavanols in a Water Suspension Medium. Green Chem. 2001, 3, 133–134. DOI: 10.1039/b101826b.
  • Choudary, M. B.; Ranganath, S. V. K.; Yadav, J.; Kantam, L. M. Synthesis of Flavanones Using Nanocrystalline MgO. Tetrahedron Lett. 2005, 46, 1369–1371. DOI: 10.1016/j.tetlet.2004.12.078.
  • Dittmer, C.; Raabe, G.; Hintermann, L. Asymmetric Cyclization of 2′-Hydroxychalcones to Flavanones: Catalysis by Chiral Brønsted Acids and Bases. Eur. J. Org. Chem. 2007, 2007, 5886–5898. DOI: 10.1002/ejoc.200700682.
  • Mondal, R.; Gupta, A. D.; Mallik, A. K. Synthesis of flavanones by Use of Anhydrous Potassium Carbonate as an Inexpensive, Safe, and Efficient Basic Catalyst. Tetrahedron Lett 2011, 52, 5020. DOI: 10.1016/j.tetlet.2011.07.072.
  • Makrandi, K. J.; Bala, S. Potassium Ferricyanide Mediated Cyclisation of 2′-Hydroxychalcones to Flavanones Using Phase Transfer Catalysis. Synth. Commun. 2000, 30, 3555–3558. DOI: 10.1080/00397910008087269.
  • Wang, L.; Liu, X.; Dong, Z.; Fu, X.; Feng, X. Asymmetric Intramolecular Oxa-Michael Addition of Activated α,β-Unsaturated Ketones Catalyzed by a Chiral N,N′-Dioxide Nickel(II) Complex: Highly Enantioselective Synthesis of Flavanones. Angew. Chem. Int. Ed. Engl. 2008, 47, 8670–8673. DOI: 10.1002/anie.200803326.
  • Lu, Y.; Zou, G.; Zhao, G. Asymmetric Intramolecular Oxa-Michael Reactions to Tetrahydrofurans/2H-Pyrans Catalyzed by Primary-Secondary Diamines. ACS Catal. 2013, 3, 1356–1359. DOI: 10.1021/cs4002332.
  • McGarraugh, P. G.; Brenner-Moyer, S. E. An Organocascade Kinetic Resolution. Org. Lett. 2011, 13, 6460–6463. DOI: 10.1021/ol2027587.
  • Santos, W. A. B.; de Castro, P. P.; Xavier, F. R.; Braga, A. L.; Martins, G. M.; Mendes, S. R. Electrosynthesis of Flavanones via oxa-Michael Addition Using Sacrificial Electrodes. Synthesis 2023, 55, 2985–2992. DOI: 10.1055/a-2038-9146.
  • Miura, M.; Shigematsu, K.; Toriyama, M.; Motohashi, S. Convenient Synthesis of Flavanone Derivatives via oxa-Michael Addition Using Catalytic Amount of Aqueous Cesium Fluoride. Tetrahedron Lett. 2021, 85, 153480. DOI: 10.1016/j.tetlet.2021.153480.
  • Nakamura, T.; Akutagawa, T.; Honda, K.; Underhill, E. A.; Coomber, T. A.; Friend, H. R. A Molecular Metal with Ion-Conducting Channels. Nature 1998, 394, 159–162. DOI: 10.1038/28128.
  • Cacciapaglia, R.; Mandolins, L. Catalysis by Metal Ions in Reactions of Crown Ether Substrates. Chem. Soc. Rev. 1993, 22, 221. DOI: 10.1039/cs9932200221.
  • Solov’ev, V. P.; Strakhova, N. N.; Raevsky, O. A.; Rüdiger, V.; Schneider, H.-J. Solvent Effects on Crown Ether Complexations. J. Org. Chem. 1996, 61, 5221–5226. DOI: 10.1021/jo952250h.
  • Ishikawa, T.; Oku, Y.; Kotake, K.-I.; Ishii, H. Cesium Fluoride-Induced Intramolecular Michael Addition: Highly Diastereoselective Ring Construction of a Trans-2,3-Dimethylchroman-4-One. J. Org. Chem. 1996, 61, 6484–6485. DOI: 10.1021/jo961170q.
  • Oh, Y.-H.; Jeong, J. G.; Kim, D. W.; Lee, S. Nucleophilic Reactions Using Alkali Metal Fluorides Activated by Crown Ethers and Derivatives. Catalysts 2023, 13, 479. DOI: 10.3390/catal13030479.
  • Sessler, J. L.; Kim, S. K.; Gross, D. E.; Lee, C.-H.; Kim, J. S.; Lynch, V. M. Crown-6-Calix[4]arene-Capped Calix[4]Pyrrole: An Ion-Pair Receptor for Solvent-Separated CsF Ions. J. Am. Chem. Soc. 2008, 130, 13162–13166. DOI: 10.1021/ja804976f.
  • Bradshaw, J. S.; Izatt, R. M. Crown Ethers: The Search for Selective Ion Ligating Agents. Acc. Chem. Res. 1997, 30, 338–345. DOI: 10.1021/ar950211m.
  • Gokel, G. W.; Leevy, W. M.; Weber, M. E. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models. Chem. Rev. 2004, 104, 2723–2750. DOI: 10.1021/cr020080k.
  • Du, Z.; Ng, H.; Zhang, K.; Zeng, H.; Wang, J. Ionic Liquid Mediated Cu-Catalyzed Cascade oxa-Michael-Oxidation: efficient Synthesis of Flavones under Mild Reaction Conditions. Org. Biomol. Chem. 2011, 9, 6930–6933. DOI: 10.1039/C1OB06209C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.