Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 14
28
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of indole derivatives from the S3•−-mediated intramolecular cyclization of o-alkynylanilines

, , , , & ORCID Icon
Pages 1147-1158 | Received 29 Dec 2023, Published online: 09 Jul 2024

References

  • Sarkar, N.; De, S.; Das, M.; Saha, T.; Banerjee, S.; Kumar, S. K. A.; Kuo, Y.-C. Insights of Indole: A Novel Target in Medicinal Chemistry (A Review). Russ. J. Gen. Chem. 2023, 93, 1791–1841. DOI: 10.1134/S1070363223070216.
  • Saleem, F.; Khan, K. M. Indole Derivatives: Unveiling New Frontiers in Medicinal and Synthetic Organic Chemistry. Molecules. 2023, 28, 5477. DOI: 10.3390/molecules28145477.
  • Cooney, L. N.; O’Shea, K. D.; Winfield, H. J.; Cahill, M. M.; Pierce, L. T.; McCarthy, F. O. Pharmaceuticals. 2023, 16, 2–26.
  • Tan, C.; Yang, S.-J.; Zhao, D.-H.; Li, J.; Yin, L.-Q. Antihypertensive Activity of Indole and Indazole Analogues: A Review. Arabian J. Chem. 2022, 15, 103756. DOI: 10.1016/j.arabjc.2022.103756.
  • Khetmalis, Y. M.; Shivani, M.; Murugesan, S.; Chandra Sekhar, K. V. G. Oxindole and Its Derivatives: A Review on Recent Progress in Biological Activities. Biomed. Pharmacotherapy. 2021, 141, 111842. DOI: 10.1016/j.biopha.2021.111842.
  • Chauhan, M.; Saxena, A.; Saha, B. An Insight in Anti-Malarial Potential of Indole Scaffold: A Review. Eur J. Med. Chem. 2021, 218, 113400. DOI: 10.1016/j.ejmech.2021.113400.
  • Kumari, A.; Singh, R. K. Medicinal Chemistry of Indole Derivatives: Current to Future Therapeutic Prospectives. Bioorg. Chem. 2019, 89, 103021. DOI: 10.1016/j.bioorg.2019.103021.
  • Xu, D.; Fang, M.; Wang, H.; Huang, L.; Xu, Q.; Xu, Z. Enhanced Production of 5-Hydroxytryptophan through the Regulation of L-Tryptophan Biosynthetic Pathway. Appl. Microbiol. Biotechnol. 2020, 104, 2481–2488. DOI: 10.1007/s00253-020-10371-y.
  • Gören-Sağlam, N.; Harrison, E.; Breeze, E.; Öz, G.; Buchanan-Wollaston, V. Analysis of the Impact of Indole-3-Acetic Acid (IAA) on Gene Expression during Leaf Senescence in Arabidopsis Thaliana. Physiol. Mol. Biol. Plants. 2020, 26, 733–745. DOI: 10.1007/s12298-019-00752-7.
  • Taber, D. F.; Tirunahari, P. K. Indole Synthesis: A Review and Proposed Classification. Tetrahedron. 2011, 67, 7195–7210. DOI: 10.1016/j.tet.2011.06.040.
  • Voth, C. N.; Dake, G. R. Nickel‐Catalyzed Arylative Additions on 2‐Alkynyl‐N‐Arylsulfonylanilides to Construct Functionalized Indoles. Eur. J. Org. Chem. 2020, 2020, 744–748. DOI: 10.1002/ejoc.201901835.
  • Ling, F.; Song, D.; Chen, L.; Liu, T.; Yu, M.; Ma, Y.; Xiao, L.; Xu, M.; Zhong, W. J. Org. Chem. 2020, 85, 3224–3233. DOI: 10.1021/acs.joc.9b03091.
  • Zhang, S.-Y.; Sun, S.-G.; Guo, Y.-S.; Lu, X.-F.; Guo, D.-S. An Efficient Synthesis of Indoles via a CuMgAl-LDH-Catalyzed Cyclization of 2-Alkynylsulfonanilides. Tetrahedron Lett. 2018, 59, 3719–3723. DOI: 10.1016/j.tetlet.2018.09.009.
  • Jia, R.; Li, B.; Zhang, X.; Fan, X. Selective Synthesis of 2-Indolyl-3-Oxoindolines or 2-(2-Aminophenyl)Quinolines through Cu(II)- or Bi(III)-Catalyzed Tunable Dimerizations of 2-Alkynylanilines. Org. Lett. 2020, 22, 6810–6815. DOI: 10.1021/acs.orglett.0c02323.
  • Li, J.; Tang, H.; Lin, Z.; Yang, S.; Wu, W.; Jiang, H. Palladium-Catalyzed Three-Component Cascade Arylthiolation with Aryldiazonium Salts as S-Arylation Sources. Org. Biomol. Chem. 2020, 18, 4071–4078. DOI: 10.1039/d0ob00828a.
  • Acerbi, A.; Carfagna, C.; Costa, M.; Mancuso, R.; Gabriele, B.; Della Ca, N. An Unprecedented Pd-Catalyzed Carbonylative Route to Fused Furo[3,4-b]Indol-1-Ones. Chemistry. 2018, 24, 4835–4840. DOI: 10.1002/chem.201706067.
  • Le, C. M.; Sperger, T.; Fu, R.; Hou, X.; Lim, Y. H.; Schoenebeck, F.; Lautens, M. Stereoselective Synthesis of Methylene Oxindoles via Palladium(II)-Catalyzed Intramolecular Cross-Coupling of Carbamoyl Chlorides. J. Am. Chem. Soc. 2016, 138, 14441–14448. DOI: 10.1021/jacs.6b08925.
  • Platon, M.; Amardeil, R.; Djakovitch, L.; Hierso, J. C. Progress in Palladium-Based Catalytic Systems for the Sustainable Synthesis of Annulated Heterocycles: A Focus on Indole Backbones. Chem. Soc. Rev. 2012, 41, 3929–3968. DOI: 10.1039/c2cs15350e.
  • Rubio-Marqués, P.; Rivero-Crespo, M. A.; Leyva-Pérez, A.; Corma, A. Well-Defined Noble Metal Single Sites in Zeolites as an Alternative to Catalysis by Insoluble Metal Salts. J. Am. Chem. Soc. 2015, 137, 11832–11837. DOI: 10.1021/jacs.5b07304.
  • Ventura-Espinosa, D.; Sabater, S.; Mata, J. A. Enhancement of Gold Catalytic Activity and Stability by Immobilization on the Surface of Graphene. J. Catal. 2017, 352, 498–504. DOI: 10.1016/j.jcat.2017.06.021.
  • Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Synthesis of Polyfunctional Indoles and Related Heterocycles Mediated by Cesium and Potassium Bases. Tetrahedron. 2003, 59, 1571–1587. DOI: 10.1016/S0040-4020(03)00073-5.
  • Chen, Z.; Shi, X.-X.; Ge, D.-Q.; Jiang, Z.-Z.; Jin, Q.-Q.; Jiang, H.-J.; Wu, J.-S. Facile Synthesis of Indoles by K2CO3 Catalyzed Cyclization Reaction of 2-Ethynylanilines in Water. Chin. Chem. Lett. 2017, 28, 231–234. DOI: 10.1016/j.cclet.2016.07.022.
  • Inamoto, K.; Asano, N.; Nakamura, Y.; Yonemoto, M.; Kondo, Y. Synthesis of 3-Carboxylated Indoles through a Tandem Process Involving Cyclization of 2-Ethynylanilines Followed by CO2 Fixation in the Absence of Transition Metal Catalysts. Org. Lett. 2012, 14, 2622–2625. DOI: 10.1021/ol300958c.
  • Li, B.; Ju, Z.; Zhou, M.; Su, K.; Yuan, D. A Reusable MOF‐Supported Single‐Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o‐Alkynylanilines. Angew. Chem. Int. Ed. 2019, 58, 7687–7691. DOI: 10.1002/anie.201902171.
  • Cook, A. K.; Copéret, C. Alkyne Hydroamination Catalyzed by Silica-Supported Isolated Zn(II) Sites. Organometallics. 2018, 37, 1342–1345. DOI: 10.1021/acs.organomet.8b00202.
  • Okuma, K.; Seto, J-i.; Sakaguchi, K-i.; Ozaki, S.; Nagahora, N.; Shioji, K. Palladium-Free Zinc-Mediated Hydroamination of Alkynes: efficient Synthesis of Indoles from 2-Akynylaniline Derivatives. Tetrahedron Lett. 2009, 50, 2943–2945. DOI: 10.1016/j.tetlet.2009.03.210.
  • Zhao, G.; Yin, Y.; Chai, Z.; Ma, W.-Y. Synthesis of Indoles via Diethylzinc-Mediated Intramolecular Hydroamination Reactions of Alkynyl Sulfonamides. Synthesis. 2008, 2008, 4036–4040. DOI: 10.1055/s-0028-1083236.
  • Nakamura, M.; Ilies, L.; Otsubo, S.; Nakamura, E. 3‐Zinciobenzofuran and 3‐Zincioindole: Versatile Tools for the Construction of Conjugated Structures Containing Multiple Benzoheterole Units. Angew. Chem. Int. Ed. 2006, 45, 944–947. DOI: 10.1002/anie.200502920.
  • Zeni, G.; Sperança, A.; Godoi, B.; Menezes, P. Application of FeCl3/Diorganyl Diselenides to Cyclization of o-Alkynyl Anilines: Synthesis of 3-Organoselenyl-(N-Methyl)Indoles. Synlett. 2013, 24, 1125–1132. DOI: 10.1055/s-0033-1338427.
  • Du, H.-A.; Tang, R.-Y.; Deng, C.-L.; Liu, Y.; Li, J.-H.; Zhang, X.-G. Iron‐Facilitated Iodine‐Mediated Electrophilic Annulation of N, N ‐Dimethyl‐2‐Alkynylanilines with Disulfides or Diselenides. Adv. Synth. Catal. 2011, 353, 2739–2748. DOI: 10.1002/adsc.201100349.
  • Sonawane, A. D.; Sonawane, R. A.; Ninomiya, M.; Koketsu, M. Synthesis of Seleno‐Heterocycles via Electrophilic/Radical Cyclization of Alkyne Containing Heteroatoms. Adv. Synth. Catal. 2020, 362, 3485–3515. DOI: 10.1002/adsc.202000490.
  • Shi, Q.; Li, P.; Zhang, Y.; Wang, L. Visible Light-Induced Tandem Oxidative Cyclization of 2-Alkynylanilines with Disulfides (Diselenides) to 3-Sulfenyl- and 3-Selenylindoles under Transition Metal-Free and Photocatalyst-Free Conditions. Org. Chem. Front. 2017, 4, 1322–1330. DOI: 10.1039/C7QO00152E.
  • Steudel, R.; Chivers, T. The Role of Polysulfide Dianions and Radical Anions in the Chemical, Physical and Biological Sciences, Including Sulfur-Based Batteries. Chem. Soc. Rev. 2019, 48, 3279–3319. DOI: 10.1039/c8cs00826d.
  • Chivers, T.; Elder, P. J. Ubiquitous Trisulfur Radical Anion: Fundamentals and Applications in Materials Science, Electrochemistry, Analytical Chemistry and Geochemistry. Chem. Soc. Rev. 2013, 42, 5996–6005. DOI: 10.1039/c3cs60119f.
  • Wang, S.-Y.; Zhao, Y.-W.; Liu, X.-Y.; Jiang, T.; Rao, W. Insertion Reaction of 2-Halo-N-Allylanilines with K2S Involving Trisulfur Radical Anion: Synthesis of Benzothiazole Derivatives under Transition-Metal-Free Conditions. Synthesis. 2020, 53, 971–977. DOI: 10.1055/s-0040-1706104.
  • Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaOtBu. Org. Lett. 2014, 16, 6156–6159. DOI: 10.1021/ol503015b.
  • Pokrovski, G. S.; Dubrovinsky, L. S. The S3−Ion is Stable in Geological Fluids at Elevated Temperatures and Pressures. Science. 2011, 331, 1052–1054. DOI: 10.1126/science.1199911.
  • Tossell, J. A. Calculation of the Properties of the S3− Radical Anion and Its Complexes with Cu+ in Aqueous Solution. Geochim. Cosmochim. Acta. 2012, 95, 79–92. DOI: 10.1016/j.gca.2012.07.020.
  • Li, J.; Liu, Y.; Chen, Z.; Li, J.; Ji, X.; Chen, L.; Huang, Y.; Liu, Q.; Li, Y. J. Org. Chem. 2022, 87, 3555–3566. DOI: 10.1021/acs.joc.1c03114.
  • Li, J. H.; Huang, Q.; Rao, W.; Wang, S. Y.; Ji, S. J. A Trisulfur Radical Anion (S3˙−) Involved Sulfur Insertion Reaction of 1,3-Enynes: sulfide Sources Control Chemoselective Synthesis of 2,3,5-Trisubstituted Thiophenes and 3-Thienyl Disulfides. Chem. Commun. 2019, 55, 7808–7811. DOI: 10.1039/C9CC03604K.
  • Li, J. H.; Huang, Q.; Wang, S. Y.; Ji, S. J. Trisulfur Radical Anion (S3˙−) Involved [1 + 2 + 2] and [1 + 3 + 1] Cycloaddition with Aromatic Alkynes: Synthesis of Tetraphenylthiophene and 2-Benzylidenetetrahydrothiophene Derivatives. Org. Lett. 2018, 20, 4704–4708. DOI: 10.1021/acs.orglett.8b02066.
  • Liu, W.; Chen, C.; Liu, H. Synthesis of Polysubstituted Thiophenes via Base‐Induced [2 + 2+1] Cycloaddition Reaction of Alkynes and Elemental Sulfur. Adv. Synth. Catal. 2015, 357, 4050–4054. DOI: 10.1002/adsc.201500422.
  • Lin, Y. M.; Lu, G. P.; Wang, R. K.; Yi, W. B. Stereoselective Synthesis of Alkenyl Silanes, Sulfones, Phosphine Oxides, and Nitroolefins by Radical C-S Bond Cleavage of Arylalkenyl Sulfides. Org. Lett. 2017, 19, 1100–1103. DOI: 10.1021/acs.orglett.7b00126.
  • Gu, Z. Y.; Cao, J. J.; Wang, S. Y.; Ji, S. J. The Involvement of the Trisulfur Radical Anion in Electron-Catalyzed Sulfur Insertion Reactions: facile Synthesis of Benzothiazine Derivatives under Transition Metal-Free Conditions. Chem. Sci. 2016, 7, 4067–4072. DOI: 10.1039/c6sc00240d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.