420
Views
4
CrossRef citations to date
0
Altmetric
Articles

An Information Geometry Approach to Robustness Analysis for the Uncertainty Quantification of Computer Codes

, ORCID Icon, & ORCID Icon
Pages 80-91 | Received 30 Dec 2019, Accepted 03 Mar 2021, Published online: 29 Apr 2021

References

  • Abramowitz, M. and Stegun, I. (Editors) (1974), Handbook of Mathematical Functions, New York: Dover Publications, Inc.
  • Amari, S. (1985), Differential-Geometrical Methods in Statistics, New York, NY: Springer New York.
  • Arnold, V. I. (1997), Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), New York: Springer.
  • Baccou, J., Zhang, J., Fillion, P., Damblin, G., Petruzzi, A., Mendizábal, R., Reventós, F., Skorek, T., Couplet, M., Iooss, B., Oh, D., and Takeda, T. (2019), “Development of Good Practice Guidance for Quantification of Thermal-hydraulic Code Model Input Uncertainty,” Nuclear Engineering and Design, 354, 110173. DOI: https://doi.org/10.1016/j.nucengdes.2019.110173.
  • Bucalossi, A., Petruzzi, A., Kristof, M., and D’Auria, F. (2010), “Comparison Between Best-estimate-plus-uncertainty Methods and Conservative Tools for Nuclear Power Plant Licensing,” Nuclear Technology, 172, 29–47. DOI: https://doi.org/10.13182/NT172-29.
  • Chabridon, V., Balesdent, M., Bourinet, J.-M., Morio, J., and Gayton, N. (2018), “Reliability-based Sensitivity Estimators of Rare Event Probability in the Presence of Distribution Parameter Uncertainty,” Reliability Engineering & System Safety, 178, 164–178.
  • Cont, R., Deguest, R., and Scandolo, G. (2010), “Robustness and Sensitivity Analysis of Risk Measurement Procedures,” Quantitative Finance, 10, 593–606. DOI: https://doi.org/10.1080/14697681003685597.
  • Costa, S. I. R., Santos, S. A., and Strapasson, J. E. (2012), “Fisher Information Distance: A Geometrical Reading,” Discrete Applied Mathematics, 197, 59–69. DOI: https://doi.org/10.1016/j.dam.2014.10.004.
  • de Rocquigny, E., Devictor, N., and Tarantola, S. (eds.). (2008), Uncertainty in Industrial Practice, Chichester: Wiley.
  • Delage, T., Sueur, R., and Iooss, B. (2018), “Robustness Analysis of Epistemic Uncertainties Propagation Studies in LOCA Assessment Thermal-hydraulic Model,” in Proceedings of ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018), Lucca, Italy.
  • Der Kiureghian, A., and Ditlevsen, O. (2009), “Aleatory or Epistemic? Does It Matter?” Structural Safety, 31, 105 – 112. DOI: https://doi.org/10.1016/j.strusafe.2008.06.020.
  • Eguchi, S. and Copas, J. (2006), “Interpreting Kullback-Leibler Divergence With the Neyman-Pearson Lemma,” Journal of Multivariate Analysis, 97, 2034–2040. DOI: https://doi.org/10.1016/j.jmva.2006.03.007.
  • Fang, K.-T., Li, R., and Sudjianto, A. (2006), Design and Modeling for Computer Experiments, New York: Chapman & Hall/CRC.
  • Geffraye, G., Antoni, O., Farvacque, M., Kadri, D., Lavialle, G., Rameau, B., and Ruby, A. (2011), “CATHARE2 V2.5_2: A Single Version for Various Applications,” Nuclear Engineering and Design, 241, 4456–4463. DOI: https://doi.org/10.1016/j.nucengdes.2010.09.019.
  • Gelfand, I., and Fomin, S. (2012), Calculus of Variations, Dover Publications.
  • Ghanem, R., Higdon, D., and Owhadi, H. (Editors) (2017), Springer Handbook on Uncertainty Quantification, Springer, Switzerland: Springer.
  • Hart, J., and Gremaud, P. (2019), “Robustness of the Sobol’ Indices to Marginal Distribution Uncertainty,” SIAM/ASA Journal on Uncertainty Quantification, 7, 1224–1244. DOI: https://doi.org/10.1137/18M123387X.
  • Hesterberg, T. (1996), “Estimates and Confidence Intervals for Importance Sampling Sensitivity Analysis,” Mathematical and Computer Modelling, 23, 79–85. DOI: https://doi.org/10.1016/0895-7177(96)00041-6.
  • Holbrook, A., Lan, S., Streets, J., and Shahbaba, B. (2017), “The Nonparametric Fisher Geometry and the Chi-Square Process Density Prior,” arXiv e-prints, arXiv:1707.03117.
  • Iooss, B. and Le Gratiet, L. (2019), “Uncertainty and Sensitivity Analysis of Functional Risk Curves Based on Gaussian Processes,” Reliability Engineering and System Safety, 187, 58–66. DOI: https://doi.org/10.1016/j.ress.2017.11.022.
  • Iooss, B. and Lemaître, P. (2015), “A Review on Global Sensitivity Analysis Methods,” in Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, eds. C. Meloni and G. Dellino, New York: Springer, pp. 101–122.
  • Iooss, B. and Marrel, A. (2019), “Advanced Methodology for Uncertainty Propagation in Computer Experiments With Large Number of Inputs,” Nuclear Technology, 205, 1588–1606. DOI: https://doi.org/10.1080/00295450.2019.1573617.
  • Iooss, B., Vergès, V., and Larget, V. (2020), “BEPU Robustness Analysis Via Perturbed-law Based Sensitivity Indices,” Preprint, Available at https://hal.archives-ouvertes.fr/hal-02864053.
  • Ishigami, T., and Homma, T. (1990), “An Importance Quantification Technique in Uncertainty Analysis for Computer Models,” in [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis, College Park, MD: IEEE Computer Society Press.
  • Jin, R., Chen, W., and Sudjianto, A. (2005), “An Efficient Algorithm for Constructing Optimal Design of Computer Experiments,” Journal of Statistical Planning and Inference, 134, 268–287. DOI: https://doi.org/10.1016/j.jspi.2004.02.014.
  • Larget, V. (2019), “How to Bring Conservatism to a BEPU Analysis,” in NURETH-18, Portland, USA.
  • Larget, V., and Gautier, M. (2020), “Increasing Conservatism in BEPU IB LOCA Safety Studies Using Complementary and Industrially Cost Effective Statistical Tools,” in E-Proceedings of BEPU 2020 Conference, in press.
  • Le Brigant, A. (2019), “A Discrete Framework to Find the Optimal Matching Between Manifold-Valued Curves,” Journal of Mathematical Imaging and Vision, 61, 40–70. DOI: https://doi.org/10.1007/s10851-018-0820-2.
  • Lemaître, P. (2014), Analyse de Sensibilité en Fiabilité des Structures – Sensitivity Analysis in Structural Reliability, Thèse de l’Université Bordeaux I.
  • Lemaître, P., Sergienko, E., Arnaud, A., Bousquet, N., Gamboa, F., and Iooss, B. (2015), “Density Modification Based Reliability Sensitivity Analysis,” Journal of Statistical Computation and Simulation, 85, 1200–1223. DOI: https://doi.org/10.1080/00949655.2013.873039.
  • Mazgaj, P., Vacher, J.-L., and Carnevali, S. (2016), “Comparison of CATHARE Results With the Experimental Results of Cold Leg Intermediate Break LOCA Obtained During ROSA-2/LSTF Test 7,” EPJ Nuclear Sciences & Technology, 2.
  • Meynaoui, A., Marrel, A., and Laurent, B. (2019), New Statistical Methodology for Second Level Global Sensitivity Analysis. Available at https://hal.archives-ouvertes.fr/hal-02019412.
  • Morio, J., and Balesdent, M. (2016), Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems, Woodhead Publishing.
  • Mousseau, V. and Williams, B. (2017), “Uncertainty Quantification in a Regulatory Environment,” in Springer Handbook on Uncertainty Quantification, eds. R. Ghanem, D. Higdon, and H. Owhadi, New York: Springer, pp. 1613–1648.
  • Newey, W. K., and McFadden, D. (1994), “Large Sample Estimation and Hypothesis Testing,” in Handbook of Econometrics, Vol. 4, Chapter 36, Elsevier, 2111 – 2245. ISSN: 1573-4412.
  • Nielsen, F. (2013), “Cramér-Rao Lower Bound and Information Geometry,” in Connected at Infinity II: A Selection of Mathematics by Indians, eds. R. Bhatia, C. S. Rajan, and A. I. Singh, Gurgaon: Hindustan Book Agency, pp. 18–37.
  • Owhadi, H., Scovel, C., Sullivan, T. J., McKerns, M., and Ortiz, M. (2013), “Optimal Uncertainty Quantification,” SIAM Review, 55, 271–345. DOI: https://doi.org/10.1137/10080782X.
  • Perrin, G. and Defaux, G. (2019), “Efficient Estimation of Reliability-oriented Sensitivity Indices,” Journal of Scientific Computing, 79, 1433–1455. DOI: https://doi.org/10.1007/s10915-018-00898-8.
  • Pesenti, S., Millossovich, P., and Tsanakas, A. (2020), “Cascade Sensitivity Measures,” SSRN, available at DOI: https://doi.org/http://dx.doi.org/10.2139/ssrn.3270839.
  • Rao, C. (1945), “Information and the Accuracy Attainable in the Estimation of Statistical Parameters,” Bull. Calcutta Math. Soc., 37.
  • Sanchez-Saez, F., Sànchez, A., Villanueva, J., Carlos, S., and Martorell, S. (2018), “Uncertainty Analysis of Large Break Loss of Coolant Accident in a Pressurized Water Reactor Using Non-parametric Methods,” Reliability Engineering and System Safety, 174, 19–28. DOI: https://doi.org/10.1016/j.ress.2018.02.005.
  • Smith, R. (2014), Uncertainty Quantification, Philadelphia: SIAM.
  • Sobol, I. (1993), “Sensitivity Estimates for Non Linear Mathematical Models,” Mathematical Modelling and Computational Experiments, 1, 407–414.
  • Stenger, J., Gamboa, F., Keller, M., and Iooss, B. (2019), “Optimal Uncertainty Quantification of a Risk Measurement From a Thermal-hydraulic Code Using Canonical Moments,” International Journal for Uncertainty Quantification, 10, 35–53. DOI: https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020030800.
  • Sternberg, S. (1999), Lectures on Differential Geometry, AMS Chelsea Publishing Series, American Mathematical Society.
  • Stillwell, J. (1998), Numbers and Geometry (Undergraduate Texts in Mathematics), New York: Springer.
  • Stirzaker, D. (2003), Elementary Probability, Cambridge, UK: Cambridge University Press.
  • Sueur, R., Bousquet, N., Iooss, B., and Bect, J. (2016), “Perturbed-Law Based Sensitivity Indices for Sensitivity Analysis in Structural Reliability,” in Proceedings of the 8th International Conference on Sensitivity Analysis of Model Output (SAMO 2016), Le Tampon, Réunion Island, France.
  • Sueur, R., Iooss, B., and Delage, T. (2017), “Sensitivity Analysis Using Perturbed-law Based Indices for Quantiles and Application to an Industrial Case,” in Proceedings of the 10th International Conference on Mathematical Methods in Reliability (MMR 2017), Grenoble, France.
  • Villani, C. (2009), Optimal Transport, Berlin, Heidelberg: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.