392
Views
0
CrossRef citations to date
0
Altmetric
Articles

Feature Detection and Hypothesis Testing for Extremely Noisy Nanoparticle Images using Topological Data Analysis

ORCID Icon, , ORCID Icon &
Pages 590-603 | Received 17 Jan 2023, Accepted 11 Apr 2023, Published online: 01 Jun 2023

References

  • Anai, H., Chazal, F., Glisse, M., Ike, Y., Inakoshi, H., Tinarrage, R., and Umeda, Y. (2020), “DTM-based Filtrations,” in Topological Data Analysis, eds. Baas, N. A., Carlsson, G. E., Quick, G., Szymik, M., and Thaule, M., pp. 33–66, Cham: Springer.
  • Atienza, N., González-Díaz, R., and Soriano-Trigueros, M. (2020), “On the Stability of Persistent Entropy and New Summary Functions for Topological Data Analysis,” Pattern Recognition, 107, 107509. DOI: 10.1016/j.patcog.2020.107509.
  • Benjamini, Y., and Hochberg, Y. (1995), “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society, Series B, 57, 289–300. DOI: 10.1111/j.2517-6161.1995.tb02031.x.
  • Benjamini, Y., and Yekutieli, D. (2001), “The Control of the False Discovery Rate in Multiple Testing Under Dependency,” The Annals of Statistics, 29, 1165–1188. DOI: 10.1214/aos/1013699998.
  • Berry, E., Chen, Y.-C., Cisewski-Kehe, J., and Fasy, B. T. (2020), “Functional Summaries of Persistence Diagrams,” Journal of Applied and Computational Topology, 4, 211–262. DOI: 10.1007/s41468-020-00048-w.
  • Biscio, C. A., and Møller, J. (2019), “The Accumulated Persistence Function, A New Useful Functional Summary Statistic for Topological Data Analysis, with a View to Brain Artery Trees and Spatial Point Process Applications,” Journal of Computational and Graphical Statistics, 28, 671–681. DOI: 10.1080/10618600.2019.1573686.
  • Blumberg, A. J., Gal, I., Mandell, M. A., and Pancia, M. (2014), “Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces,” Foundations of Computational Mathematics, 14, 745–789. DOI: 10.1007/s10208-014-9201-4.
  • Boissonnat, J.-D., Chazal, F., and Yvinec, M. (2018). Geometric and Topological Inference (Vol. 57), Cambridge: Cambridge University Press.
  • Carlsson, G., and Vejdemo-Johansson, M. (2022), Topological Data Analysis with Applications, Cambridge: Cambridge University Press.
  • Cericola, C., Johnson, I. J., Kiers, J., Krock, M., Purdy, J., and Torrence, J. (2017), “Extending Hypothesis Testing with Persistent Homology to Three or More Groups,” Involve, a Journal of Mathematics, 11, 27–51. DOI: 10.2140/involve.2018.11.27.
  • Chazal, F., and Michel, B. (2021), “An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists,” Frontiers in Artificial Intelligence, 4, 667963. DOI: 10.3389/frai.2021.667963.
  • Chen, X., Chen, D., Weng, M., Jiang, Y., Wei, G. W., and Pan, F. (2020), “Topology-Based Machine Learning Strategy for Cluster Structure Prediction,” Journal of Physical Chemistry Letters, 11, 4392–4401. DOI: 10.1021/acs.jpclett.0c00974.
  • Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.-J., and Krim, H. (2015), “An Entropy-based Persistence Barcode,” Pattern Recognition, 48, 391–401. DOI: 10.1016/j.patcog.2014.06.023.
  • Chung, Y.-M., and Day, S. (2018), “Topological Fidelity and Image Thresholding: A Persistent Homology Approach,” Journal of Mathematical Imaging and Vision, 60, 1167–1179. DOI: 10.1007/s10851-018-0802-4.
  • Chung, Y.-M., Day, S., and Hu, C.-S. (2022), “A Multi-Parameter Persistence Framework for Mathematical Morphology,” Scientific Reports, 12, 6427. DOI: 10.1038/s41598-022-09464-7.
  • Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007), “Stability of Persistence Diagrams,” Discrete and Computational Geometry, 37, 103–120. DOI: 10.1007/s00454-006-1276-5.
  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J., and Mileyko, Y. (2010), “Lipschitz Functions have lp-Stable Persistence,” Foundations of Computational Mathematics, 10, 127–139.
  • DasGupta, A. (2011), Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics, New York: Springer.
  • Davison, A. C., and Hinkley, D. V. (1997), Bootstrap Methods and their Application. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge: Cambridge University Press.
  • Dłotko, P. (2015), “Cubical Complex,” in GUDHI User and Reference Manual. GUDHI Editorial Board.
  • Edelsbrunner, Letscher, and Zomorodian (2002), “Topological Persistence and Simplification,” Discrete & Computational Geometry, 28(4):511–533. DOI: 10.1007/s00454-002-2885-2.
  • Edelsbrunner, H., and Harer, J. (2010), Computational Topology: An Introduction, Providence, RI: American Mathematical Society.
  • Egerton, R. (2013), “Control of Radiation Damage in the TEM,” Ultramicroscopy, 127, 100–108. DOI: 10.1016/j.ultramic.2012.07.006.
  • Egerton, R. (2019), “Radiation Damage to Organic and Inorganic Specimens in the TEM,” Micron, 119, 72–87. DOI: 10.1016/j.micron.2019.01.005.
  • Egerton, R., Li, P., and Malac, M. (2004), “Radiation Damage in the TEM and SEM,” Micron, 35, 399–409. DOI: 10.1016/j.micron.2004.02.003.
  • Faruqi, A., and McMullan, G. (2018), “Direct Imaging Detectors for Electron Microscopy,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 180–190. DOI: 10.1016/j.nima.2017.07.037.
  • Fasy, B. T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., and Singh, A. (2014), “Confidence Sets for Persistence Diagrams,” The Annals of Statistics, 42, 2301–2339. DOI: 10.1214/14-AOS1252.
  • Garin, A., Heiss, T., Maggs, K., Bleile, B., and Robins, V. (2020), “Duality in Persistent Homology of Images,” arXiv preprint arXiv:2005.04597.
  • Garin, A., and Tauzin, G. (2019), “A Topological ’Reading’ Lesson: Classification of MNIST using TDA,” Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, pp. 1551–1556.
  • Gillies, S. (2013), “The Shapely User Manual,” https://pypi.org/project/Shapely.
  • Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008), Statistical Analysis and Modelling of Spatial Point Patterns (Vol. 70), Chichester: Wiley.
  • Jiang, Y., Chen, D., Chen, X., Li, T., Wei, G. W., and Pan, F. (2021), “Topological Representations of Crystalline Compounds for the Machine-Learning Prediction of Materials Properties,” NPJ Computational Materials, 7, 1–8. DOI: 10.1038/s41524-021-00493-w.
  • Kaczynski, T., Mischaikow, K., and Mrozek, M. (2006), Computational Homology (Vol. 157), New York: Springer.
  • Kong, H., Akakin, H. C., and Sarma, S. E. (2013), “A Generalized Laplacian of Gaussian Filter for Blob Setection and its Applications,” IEEE Transactions on Cybernetics, 43, 1719–1733. DOI: 10.1109/TSMCB.2012.2228639.
  • Kovalevsky, V. (1989), “Finite Topology as Applied to Image Analysis,” Computer Vision, Graphics, and Image Processing, 46, 141–161. DOI: 10.1016/0734-189X(89)90165-5.
  • Lawrence, E. L., Levin, B. D., Boland, T., Chang, S. L., and Crozier, P. A. (2021), “Atomic Scale Characterization of Fluxional Cation Behavior on Nanoparticle Surfaces: Probing Oxygen Vacancy Creation/Annihilation at Surface Sites,” ACS Nano, 15, 2624–2634. DOI: 10.1021/acsnano.0c07584.
  • Lawrence, E. L., Levin, B. D., Miller, B. K., and Crozier, P. A. (2019), “Approaches to Exploring Spatio-Temporal Surface Dynamics in Nanoparticles with in situ Transmission Electron Microscopy,” Microscopy and Microanalysis, 2, 86–94. DOI: 10.1017/S1431927619015228.
  • Lawson, A., Hoffman, T., Chung, Y.-M., Keegan, K., and Day, S. (2021), “A Density-based Approach to Feature Detection in Persistence Diagrams for Firn Data,” Foundations of Data Science, 4, 623–639. DOI: 10.3934/fods.2021012.
  • Levin, B. D. (2021), “Direct Detectors and their Applications in Electron Microscopy for Materials Science,” Journal of Physics: Materials, 4, 042005. DOI: 10.1088/2515-7639/ac0ff9.
  • Levin, B. D., Lawrence, E. L., and Crozier, P. A. (2020), “Tracking the Picoscale Spatial Motion of Atomic Columns During Dynamic Structural Change,” Ultramicroscopy, 213, 112978. DOI: 10.1016/j.ultramic.2020.112978.
  • Lindeberg, T. (1998), “Feature Detection with Automatic Scale Selection,” International Journal of Computer Vision, 30, 79–116. DOI: 10.1023/A:1008045108935.
  • Manzorro, R., Xu, Y., Vincent, J. L., Rivera, R., Matteson, D. S., and Crozier, P. A. (2022), “Exploring Blob Detection to Determine Atomic Column Positions and Intensities in Time-Resolved TEM Images with Ultra-Low Signal-to-Noise,” Microscopy and Microanalysis, 28, 1–14. DOI: 10.1017/S1431927622000356.
  • Massart, P. (1990), “The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality,” The Annals of Probability, 18, 1269–1283. DOI: 10.1214/aop/1176990746.
  • Mischaikow, K., and Nanda, V. (2013), “Morse Theory for Filtrations and Efficient Computation of Persistent Homology,” Discrete & Computational Geometry, 50, 330–353. DOI: 10.1007/s00454-013-9529-6.
  • Mohan, S., Manzorro, R., Vincent, J. L., Tang, B., Sheth, D. Y., Simoncelli, E. P., Matteson, D. S., Crozier, P. A., and Fernandez-Granda, C. (2022), “Deep Denoising for Scientific Discovery: A Case Study in Electron Microscopy,” IEEE Transactions on Computational Imaging, 8, 585–597. DOI: 10.1109/TCI.2022.3176536.
  • Motta, F. C., Neville, R., Shipman, P. D., Pearson, D. A., and Bradley, R. M. (2018), “Measures of Order for Nearly Hexagonal Lattices,” Physica D: Nonlinear Phenomena, 380–381, 17–30. DOI: 10.1016/j.physd.2018.05.005.
  • Mukherjee, D., Miao, L., Stone, G., and Alem, N. (2020), “mpfit: A Robust Method for Fitting Atomic Resolution Images with Multiple Gaussian Peaks,” Advanced Structural and Chemical Imaging, 6, 1–12. DOI: 10.1186/s40679-020-0068-y.
  • Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H., and Hahn, U. (2017), “Global Envelope Tests for Spatial Processes,” Journal of the Royal Statistical Society, Series B, 79, 381–404. DOI: 10.1111/rssb.12172.
  • Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E. G., and Nishiura, Y. (2015), “Persistent Homology and Many-Body Atomic Structure for Medium-Range Order in the Glass,” Nanotechnology, 26, 304001. DOI: 10.1088/0957-4484/26/30/304001.
  • Nord, M., Vullum, P. E., MacLaren, I., Tybell, T., and Holmestad, R. (2017), “Atomap: A New Software Tool for the Automated Analysis of Atomic Resolution Images Using Two-Dimensional Gaussian Fitting,” Advanced Structural and Chemical Imaging, 3, 1–12. DOI: 10.1186/s40679-017-0042-5.
  • Rieck, B., Yates, T., Bock, C., Borgwardt, K., Wolf, G., Turk-Browne, N., and Krishnaswamy, S. (2020), “Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence,” in Advances in Neural Information Processing Systems (NeurIPS) (Vol. 33), pp. 6900–6912.
  • Robinson, A., and Turner, K. (2017), “Hypothesis Testing for Topological Data Analysis,” Journal of Applied and Computational Topology, 1, 241–261. DOI: 10.1007/s41468-017-0008-7.
  • Rucco, M., Castiglione, F., Merelli, E., and Pettini, M. (2016), “Characterisation of the Idiotypic Immune Network through Persistent Entropy,” in Proceedings of ECCS 2014, pp. 117–128, Springer.
  • Ruskin, R. S., Yu, Z., and Grigorieff, N. (2013), “Quantitative Characterization of Electron Detectors for Transmission Electron Microscopy,” Journal of Structural Biology, 184, 385–393. DOI: 10.1016/j.jsb.2013.10.016.
  • Skraba, P., and Turner, K. (2022), “Wasserstein Stability for Persistence Diagrams.” arXiv:2006.16824.
  • Taylor, J. E., Worsley, K., and Gosselin, F. (2007), “Maxima of Discretely Sampled Random Fields, with an Application to ’bubbles’,” Biometrika, 94, 1–18. DOI: 10.1093/biomet/asm004.
  • Turkes, R., Nys, J., Verdonck, T., and Latre, S. (2021), “Noise Robustness of Persistent Homology on Greyscale Images, Across Filtrations and Signatures,” PloS One, 16, 1–26. DOI: 10.1371/journal.pone.0257215.
  • Vejdemo-Johansson, M., and Mukherjee, S. (2022), “Multiple Hypothesis Testing with Persistent Homology,” Foundations of Data Science, 4, 667–705. DOI: 10.3934/fods.2022018.
  • Vincent, J. L., and Crozier, P. A. (2021), “Atomic Level Fluxional Behavior and Activity of CeO2-Supported pt Catalysts for co Oxidation,” Nature Communications, 12, 1–13. DOI: 10.1038/s41467-021-26047-8.
  • Wagner, H., Chen, C., and Vuçini, E. (2012), “Efficient Computation of Persistent Homology for Cubical Data,” in Topological Methods in Data Analysis and Visualization II, eds. R. Peikert, H. Hauser, H. Carr, and R. Fuchs, pp. 91–106, Berlin: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.