3,087
Views
114
CrossRef citations to date
0
Altmetric
Papers

Personal cooling garments: a review

&
Pages 1231-1250 | Received 08 Jul 2013, Accepted 12 Feb 2014, Published online: 17 Mar 2014

References

  • Albright, G. A., Kirby, M., Benjamin, F. B., Beck, A., & Frankel, G. G. (1964). Ventilation effectiveness of the Apollo Prototype Space Suit. Preprints, 35th Annual Meeting, Aerospace Medical Association (pp. 62–65).
  • Allan, J. R. (1966). The liquid conditioned suit: A physiological assessment (Report No. 234). Farnborough, Hants: RAF Institute of Aviation Medicine.
  • Allan, J. R. (1967). The effects of high ambient humidity on the performance of the liquid conditioned suit (Report No. 265). Farnborough, Hants: RAF Institute of Aviation Medicine, Publication FPRC-1265.
  • Allan, J. R. (1988). The development of personal conditioning in military aviation. Ergonomics, 31, 1031–1040. doi:10.1080/00140138808966742
  • Allan, J. R., Elliott, D. H., & Hayes, P. A. (1986). The thermal performance of partial coverage wet suits. Aviation, Space and Environmental Medicine, 57, 1056–1060.
  • Armstrong, L. E., & Maresh, C. M. (1995). Exercise-heat tolerance of children and adolescence. Pediatric Exercise Science, 7, 239–252.
  • Arngrimsson, S. A., Petitt, D. S., Stueck, M. G., Jorgensen, D. K., & Cureton, K. J. (2004). Cooling vest worn during active warm-up improves 5-km run performance in the heat. Applied Physiology, 96, 1867–1874. doi:10.1152/japplphysiol.0.0979.2003
  • ASHRAE 55.66. (1966). Thermal comfort conditions. ASHRAE standard.
  • ASTM D15l8-85. (1985). Standard test method for thermal transmittance of textile materials.
  • ASTM F1868-02. (2002). Standard test method for thermal and evaporative resistance of clothing materials using a sweating hot plate.
  • ASTM F2371-10. (2010). Standard test method for measuring the heat removal of personal cooling system using a sweating heated manikin.
  • ASTM Standard F1291. (1999). Standard test method for measuring the thermal insulation of clothing using a heated manikin.
  • Bain, B. (1991). Effectiveness of ice-vest cooling in prolonging work tolerance time during heavy exercise in the heat for personnel wearing Canadian Forces chemical defence ensembles (Report No. 91-06). Downsview: Defence and Civil Institute of Environmental Medicine.
  • Bajaj, P. (2001). Thermally sensitive materials. In X. M. Tao (Ed.), Smart fibres, fabrics and clothing (pp. 58–82). Cambridge: Woodhead.
  • Banta, G. R., & Braun, D. E. (1992). Heat strain during at-sea helicopter operations and the effect of passive microclimate cooling. Aviation, Space and Environmental Medicine, 63, 881–885.
  • Barr, D., Gregson, W., & Reilly, T. (2010). The thermal ergonomics of firefighting reviewed. Applied Ergonomics, 41, 161–172. doi:10.1016/j.apergo.2009.07.001
  • Barr, D., Gregson, W., Sutton, L., & Reilly, T. (2009). A practical cooling strategy for reducing the physiological strain associated firefighting activity in the heat. Ergonomics, 52, 413–420. doi:10.1080/00140130802707675
  • Barr, D., Reily, T., & Gregson, W. (2010). The impact of different cooling modalities on the physiological responses in firefighters during strenuous work performed in high environmental temperatures. European Journal of Applied Physiology, 111, 959–967. doi:10.1007/s00421-010-1714-1
  • Barwood, M. J., Davey, S., House, J. R., & Tipton, M. J. (2009). Post-exercise cooling techniques in hot, humid conditions. European Journal of Applied Physiology, 107, 385–396. doi:10.1007/s00421-009-1135-1
  • Bendkowska, W., Kłonowska, M., Kopias, K., & Bogdan, A. (2010). Thermal Manikin evaluation of PCM cooling vests. Fibres and Textiles in Eastern European, 18, 70–74.
  • Bennett, B. L., Hagan, R. D., Huey, K. A., Minson, C., & Cain, D. (1995). Comparison of two cool vests on heat strain reduction while wearing a firefighting ensemble. European Journal of Applied Physiology, 70, 322–328.
  • Billingham, J. (1959). Heat exchange between man and his environment on the surface of the moon. British Interplanetary Society, 17, 297–300.
  • Bishop, P. A., Nunneley, S. A., & Constable, S. H. (1991). Comparisons of air and liquid personal cooling for intermittent heavy work in moderate temperatures. AIHA Journal, 52, 393–397.
  • Blair, D. A., Glover, W. E., & Roddie, I. C. (1961). Cutaneous vasomotor nerves to the head and trunk. Applied Physiology, 16, 119–122.
  • Bogerd, N., Psikuta, A., Daanen, H. A. M., & Rossi, R. M. (2010). How to measure thermal effects of personal cooling systems: Human, thermal manikin and human simulator study. Physiology Measurement, 31, 1161–1168. doi:10.1088/0967-3334/31/9/007
  • Bomalaski, S. H., Chen, Y. T., & Constable, S. H. (1995). Continuous and intermittent personal microclimate cooling strategies. Aviation, Space and Environmental Medicine, 66, 745–50.
  • Bowen, J. D., & Witte, R. F. (1963). Thermal transport system for a space worker’s garment. Wright-Patterson AFB, OH: AMRL memorandum M-49, Aerospace Medical Research Laboratory.
  • Burriss, W. L., Lin, S. H., & Berensen, P. J. (1965). Study of the thermal processes for man-in-space (Report No. NASA-CR-216, NASw-1015). Washington, DC: National Aeronautics and Space Administration.
  • Burton, D. R. (1966). Performance of water conditioned suits. Aerospace Medicine, 37, 500–504.
  • Burton, D. R. (1969). Engineering aspects of personal conditioning. Proceedings of the Symposium on Individual Cooling, Kansas State University, 6, 33–49.
  • Burton, D. R., & Collier, L. (1964). The development of water conditioned suits (Tech. Note ME-400) Farnborough: Royal Aircraft Establishment.
  • Burton, D. R., & Collier, L. (1965). The performance of water conditioned suits (Report No. 65004). UK: Royal Aircraft Establishment.
  • Cabeza, L., Heinz, A., & Streicher, W. (2005). Inventory of phase change materials (PCM). A technical report of IEA solar heating and cooling programme, Report C2 of subtask C.
  • Cadarette, B. S., Cheuvront, S. N., Kolka, M. A., Stephenson, L. A., Montain, S. J., & Sawka, M. N. (2006). Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing. Ergonomics, 49, 209–219. doi:10.1080/00140130500436106
  • Cadarette, B. S., DeCristofano, B. S., Speckman, K. L., & Sawka, M. N. (1990). Evaluation of three commercial microclimate cooling systems. Aviation, Space, and Environental Medicine, 61, 71–76.
  • Cao, H., Branson, D. H., Nam, J., Peksoz, S., & Farr, C. A. (2005). Development of a cooling capability test method for liquid-cooled textile system. In P. Yarborough & C. N. Nelson (Eds.), Global needs and emerging markets (Vol. 8, pp. 111–120). West Conshohocken, PA: ASTM International.
  • Cao, H., Branson, D. H., Peksoz, S., Nam, J., & Farr, C. H. (2006). Fabric selection for a liquid cooling garment. Textile Research Journal, 76, 587–595. doi:10.1177/0040517506067375
  • Candas, V., Libert, J. P., & Vogt, J. J. (1979). Human skin wettedness and evaporative efficiency of sweating. Journal of Applied Physiology, 46, 522–528.
  • Carter, J. B., Banister, E. W., & Morrison, J. B. (1999). Effectiveness of rest pauses and cooling in alleviation of heat stress during simulated firefighting activity. Ergonomics, 42, 299–313. doi:10.1080/001401399185667
  • Carter, J. M., Rayson, M. P., Wilkinson, D. M., Richmond, V., & Blacker, S. (2007). Strategies to combat heat strain during and after firefighting. Thermal Biology, 32, 109–116. doi:10.1249/00005768-200605001-00786
  • Chambers, A. B. (1970). Controlling thermal comfort in the EVA space suit. ASHRAE Journal, 12, 33–38.
  • Chan, Y. T., Constable, S. H., & Bomalaski, S. H. (1997). A lightweight ambient air cooling unit for use in hazardous environments. American Industrial Hygiene Association, 58, 10–14. doi:10.1080/15428119791013017
  • Chauhan, D. T. (1995). Review of literature on cooling garments. London: Laxman Ergonomics Consultants.
  • Cheung, S. S., & Robinson, A. (2004). The influence of upper-body pre-cooling on repeated sprint performance in moderate ambient temperatures. Sports Science, 22, 605–612. doi:10.1080/02640410310001655813
  • Cheung, S. S., & Sleivert, G. G. (2004). Multiple triggers for hyperthermic fatigue and exhaustion. Exercise Sport Science Review, 32, 100–106. doi:10.1097/00003677-200407000-00005
  • Cheuvront, S. N., Kolka, M. A., Cadarette, B. S., Montain, S. J., & Sawka, M. N. (2003). Efficacy of intermittent, regional microclimate cooling. Journal of Applied Physiology, 94, 1841–1848. doi:10.1152/japplphysiol.0.0912.2002
  • Cheuvront, S. N., Montain, S. J., Stephenson, L. A., & Sawka, M. N. (2009). Optimization of liquid microclimate cooling systems: importance of skin temperature. Proceedings 13th International Conference on Environmental Ergonomics (pp. 247–251). August 2nd–7th, Boston, MA, USA.
  • Chinevere, T. D., Cadarette, B. S., Goodman, D. A., Ely, B. R., Cheuvront, S. N., & Sawka, M. N. (2008). Efficacy of body ventilation system for reducing strain in warm and hot climates. European Journal of Applied Physiology, 103, 307–314. doi:10.1007/s00421-008-0707-9
  • Choi, J. W., Kim, M. J., & Lee, J. Y. (2008). Alleviation of heat strain by cooling different body areas during red pepper harvest work at WBGT 338C. Industrial Health, 46, 620–628.
  • Choi, K., Cho, G., Kim, P., & Cho, C. (2004). Thermal storage/release and mechanical properties of phase change materials on polyester fabrics. Textile Research Journal, 74, 292–296. doi:10.1177/004051750407400402
  • Chou, C., Tochihara, Y., & Kim, T. (2008). Physiological and subjective responses to cooling devices on firefighting protective clothing. European Journal of Applied Physiology, 104, 369–374. doi:10.1007/s00421-007-0665-7
  • Clifford, J. M. (1965). Some aspects of personal cooling in inadequately air conditioned cockpits. AGARD CP-2 (pp. 75–88).
  • Cohen, J. B., Allan, J. R., & Sowood, P. J. (1989). Effect of head or neck cooling used with a liquid-conditioned vest during simulated aircraft sorties. Aviation, Space and Environmental Medicine, 60, 315–320.
  • Colvin, D. P., & Bryant, Y. G. (1995). US Patent No. 5,415,222. Washington, DC: US Microclimate cooling garment.
  • Cowell, S. A., Stocks, J. M., Evans, D. G., Simonson, S. R., & Greenleaf, J. E. (2002). The exercise and environmental physiology of extravehicular activity. Aviation, Space and Environmental Medicine, 73, 54–67.
  • Craig, D. Q. M., & Newton, J. M. (1991). Characterisation of polyethylene glycols using differential scanning calorimetry. International Journal of Pharmaceutics, 74, 33–41.
  • Crawshaw, L. I., Nadel, E. R., Stolwijk, J. A. J., & Stamford, B. A. (1975). Effect of local cooling on sweating rate and cold sensation. Pflügers Archive, 354, 19–27. doi:10.1007/bf00584500
  • Crocker, J. F., Webb, P., & Jennings, D. C. (1964). Metabolic heat balances in working men wearing liquid cooled sealed clothing. AIAA-NASA Third Manned Spaceflight Meeting (pp. 111–117). Washington, DC: AIAA Publication CP-10.
  • Crockford, G. W., & Lee, D. E. (1967). Heat-protective ventilated jackets: A comparison of humid and dry ventilating air. British Journal of Medicine, 24, 52–59.
  • Daanen, H. A., van Es, E. M., & de Graaf, J. L. (2006). Heat strain and gross efficiency during endurance exercise after lower, upper, or whole body precooling in the heat. International Journal of Sports Medicine, 27, 379–388. doi:10.1055/s-2005-865746
  • Delkumburewatte, G. B. (2008). The development of a cooling system in a knitted structure to manage heat and moisture under extreme conditions (Unpublished doctoral dissertation). The University of Manchester, Manchester.
  • Delkumburewatte, G. B., & Dias, T. (2012). Wearable cooling system to manage heat in protective clothing. The Journal of The Textile Institute, 103, 483–489. doi:10.1080/00405000.2011.587647
  • Djongyang, N., Tchinda, R., & Njomo, D. (2010). Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, 14, 2626–2640. doi:10.1016/j.rser.2010.07.040
  • Duffield, R. (2008). Cooling interventions for the protection and recovery of exercise performance from exercise-induced heat stress. Medicine and Sport Science, 53, 89–103. doi:10.1159/000151552
  • Duffield, R., Dawson, B., Bishop, D., Fitzsimons, M., & Lawrence, S. (2003). Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions. British Journal of Sports Medicine, 37, 164–169. doi:10.1136/bjsm.37.2.164
  • Dumitriu, S. (Ed.). (1993). Polymeric biomaterials. New York, NY: Marcel Dekker.
  • Duncan, J., & Konz, S. (1975). Design and evaluation of a personal dry-ice cooling jacket. In Human Factors Society, Proceedings of 19th Annual Meeting (pp. 359–363). Santa Monica, CA: Human Factors Society.
  • Edwards, R. J., Harrison, M. H., & Paine, K. M. (1976). Evaluation of the liquid conditioned coverall during simulated cockpit standby in the heat (Report No. 400). Royal Air Force Institute of Aviation Aircrew Equipment Group.
  • Endrusick, T. L., Stoschein, L. A., & Gonzalez, R. R. (2001). US Military Use of Thermal Manikins in Protective Clothing Research. RTA/HFM Symposium ‘Blowing hot and cold: Protecting against climatic extremes’, Dresden, Germany.
  • Epstein, Y., Shapiro, Y., & Brill, S. (1986). Comparison between different auxiliary cooling devices in a severe hot/dry climate. Ergonomics, 29, 41–48. doi:10.1080/00140138608968239
  • Epstein, Y., & Sohar, E. (1985). Fluid balance in hot climates: Sweating, water intake, and prevention of dehydration. Public Health Reviews, 13, 115–137.
  • Erkan, G. (2004). Enhancing the thermal properties of textiles with phase change materials. Research Journal of Textile and Apparel, 8, 57–64.
  • Fanger, P. O. (1970). Thermal comfort: Analysis and application in environmental engineering. Copenhagen: Danish Technical Press.
  • Fanger, P. O. (1973). Assessment of man’s thermal comfort in practice. British Journal of Industrial Medicine, 30, 313–324.
  • Farid, M. M., Khudhair, A. M., Razack, S. A. K., & Al-Hallaj, S. (2004). A review on phase change energy storage: Materials and applications. Energy Conversion and Management, 45, 1597–1615. doi:10.1016/j.enconman
  • Farrington, R., Rugh, J., Bharathan, D., & Burke, R. (2004). Use of a thermal manikin to evaluate human thermoregulatory responses in transient, non-uniform, thermal environments. SAE technical paper. Society of Automotive Engineers International, 1, 2345--2347. doi:10.4271/2004-01-2345
  • Featherstone, G. (1988). Development and use of an aircooled suit for work in nuclear reactor. Ergonomics, 31, 1025–1029. doi:10.1080/00140138808966741
  • Felder, J. W., & Schlosinger, A. P. (1963). ‘Research on methods for thermal transport in a space worker’s garment (AMRL-TDR-63-90). Wright-Patterson AFB, OH: Aerospace Medical Research Laboratories.
  • Fiala, D., Lomas, K. J., & Stohrer, M. (1999). A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. Applied Physiology, 87, 1957–1972.
  • Fiala, D., Lomas, K. J., & Stohrer, M. (2001). Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology, 45, 143–159. doi:10.1007/s004840100099
  • Figura, S. Z. (1997). Cooling off. Occupational Hazards, 59, 81–82.
  • Flouris, A. D., & Cheung, S. S. (2006). Design and control optimization of microclimate liquid cooling systems underneath protective clothing. Annals of Biomedical Engineering, 34, 359–372. doi:10.1007/s10439-005-9061-9
  • Fox, R. H., Goldsmith, R., & Kidd, D. J. (1962). Cutaneous vasomotor control in the human head, neck and upper chest. Physiology, 161, 298–312.
  • Frim, J. (1989). Head cooling is desirable but not essential for preventing heat strain in pilots. Aviation, Space, and Environmental Medicine, 60, 1056–1062.
  • Gagge, A. P., & Hardy, J. D. (1967). Thermal radiation exchange of the human by partitional calorimetry. Journal of Applied Physiology, 23, 248–258.
  • Gagge, A. P., & Nishi, Y. (1977). Heat exchange between human skin surface and thermal environment. Supplement 26. In Handbook of physiology: Reaction to environment agents. American Physiological Society. doi:10.1002/cphy.cp090105
  • Gao, C., Kuklane, K., & Holme′r, I. (2010a). Cooling vests with phase change material packs: The effects of temperature gradient, mass, and covering area. Ergonomics, 53, 716–723. doi:10.1080/00140130903581649
  • Gao, C., Kuklane, K., & Holme′r, I. (2010b). Cooling vests with phase change materials: The effect of melting temperature on heat strain alleviation in an extremely hot environment. European Journal of Applied Physiology, 111, 1207–1216. doi:10.1007/s00421-010-1748-4
  • Gao, C., Kuklane, K., & Holmer, I. (2010c). Thermoregulatory manikines are desirable for evaluation of intelligent clothing and smart textiles. Eighth international meeting for manikines and modeling, Victoria, BC, Canada, August.
  • Genin, A. M., & Golovkin, L. G. (1966). The problem of prolonged autonomous human existence in a space suit (Report No. N67-26575). NASA TTF.
  • Gines, J. M., Arias, M. J., Rabasco, A. M., Novak, C., RuizConde, A., & SanchezSoto, P. J. (1996). Thermal characterization of polyethylene glycols applied in the pharmaceutical technology using differential scanning calorimetry and hot stage microscopy. Journal of Thermal Analysis, 46, 291–304. doi:10.1007/bf01979969
  • Gledhill, N., & Jamnik, V. K. (1992). Characterization of the physical demands of firefighting. Canadian Sport Science, 17, 207–213.
  • Gonzalez, J. A., Berglund, L. G., Kolka, M. A., & Endrusick, T. L. (2006). Forced ventilation of protective garments for hot industries. (Report No. ADA460047). A report by US army medical research and material command, Natick, MA.
  • Hadid, A., Fuks, Y., Erlich, T., Yanovich, R., Heled, Y., Azriel, N., & Moran, D. S. (2009). Effect of a personal ambient ventilation system on physiological strain during heat stress wearing body armour. Proceedings 13th International Conference on Environmental Ergonomics (pp. 252–254). August 2nd–7th, Boston, MA.
  • Hadid, A., Yanovich, R., Erlich, T., Khomenok, G., & Moran, D. S. (2008). Effect of a personal ambient ventilation system on physiological strain during heat stress wearing a ballistic vest. European Journal of Applied Physiology, 104, 311–319. doi:10.1007/s00421-008-0716-8
  • Hardy, J. D. (1949). Heat transfer. In L. H. Newburgh (Ed.), Physiology of heat regulation and science of clothing (pp. 78–85). London: WB Saunders.
  • Harrington, T. J., Edwards, D. K., & Wortz, E. C. (1995). Metabolic rates in pressurized pressure suits. Aerospace Medicine, 36, 825–830.
  • Harrison, M. H., & Belyavin, A. J. (1978). Operational characteristics of liquid-conditioned suits. Aviation, Space and Environmental Medicine, 49, 994–1003.
  • Harrison, M. H., & Gibson, T. M. (1982). The history of the I.A.M.: Protecting against the elements (Report No. R620). Royal Air Force Institute of Aviation Medicine.
  • Havenith, G. (1999). Heat balance when wearing protective clothing. The Annals of Occupational Hygiene, 43, 289–296. doi:10.1093/annhyg/43.5.289
  • Havenith, G. (2002). The interaction of clothing and thermoregulation. Exogenous Dermatology, 1, 221–230. doi:10.1159/000068802
  • Havenith, G., Holmer, I., den Hartog, E. A., & Parsons, K. C. (1999). Clothing evaporative heat resistance – Proposal for improved representation in standards and models. The Annals of Occupational Hygiene, 43, 339–346.
  • Heaney, J. H., Banta, G. R., Buono, M. J., & Bulbulian, R. (1991). Passive microclimate cooling prevents cardiovascular drift during high heat production. American College of Sports Medicine Annual Meeting, Abstracts. Medicine & Science in Sports and Exercise, 23, 159.
  • Heaney, J. H., Buono, M. J., & Hodgdon, J. A. (1998). The effects of exercise, heat and microclimate cooling on thermal stroke volume in men and women. International Conference on Environmental Ergonomics – VIII (pp. 237–240). San Diego, CA.
  • Henane, R., Bittel, J., Viret, R., & Morino, S. (1979). Thermal strain resulting from protective clothing of an armored vehicle crew in warm conditions. Aviation, Space and Environmental Medicine, 50, 599–603.
  • Hertzman, A. B. (1959). Vasomotor regulation of cutaneous circulation. Physiological Reviews, 39, 280–306.
  • Hexamer, M., & Werner, J. (1995). Control of liquid cooling garments: Subjective versus technical control of thermal comfort. Applied Human Science, 14, 271–278.
  • Hexamer, M., & Werner, J. (1996). Control of liquid cooling garments: Technical control of body heat storage. Applied Human Science, 15, 177–185. doi:10.2114/jpa.15.177
  • Hexamer, M., & Werner, J. (1997). Control of liquid cooling garments: Technical control of mean skin temperature and its adjustments to exercise. Applied Human Science, 16, 237–247.
  • Himran, S., & Suwong, S. (1994). Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources, 16, 117–128. doi:10.1080/00908319408909065
  • Hinz, J., Rosmus, M., Popov, A., Moerer, O., Frerichs, I., & Quintel, M. (2007). Effectiveness of an intravascular cooling method compared with a conventional cooling technique in neurologic patients. Neurosurgical Anesthesiology, 19, 130–135.
  • Hittle, D. C., & Andre, T. L. (2002). A new test instrument and procedure for evaluation of fabrics containing phase-change material. ASHRAE Transactions, 108, 175–182.
  • Holmer, I. (2003). Manikin history and applications. European Journal of Applied Physiology, 92, 614–618. doi:10.1007/s00421-004-1135-0
  • Holme′r, I., Kuklane, K., & Gao, C. (2006). Test of firefighter’s turnout gear in hot and humid air exposure. International Journal of Occupational Safety and Ergonomics, 2, 297–305.
  • Hopp, B., Smausz, T., Tomba′cz, E., Wittmann, T., & Igna′cz, F. (2000). Solid state and liquid ablation of polyethylene-glycol 1000: Temperature dependence. Optics Communications, 181, 337–343.
  • House, J. R. (1996). Reducing heat strain with ice-vests or hand-immersion. In Y. Shapiro, Y. Epstein, & D. Moran (Eds.), International conference on environmental ergonomics (pp. 347–350). Jerusalem: Freund.
  • House, J. R. (2006). An investigation into the use of limbs as sites for body cooling and the influence of skin blood flow on body cooling rates (Doctoral dissertation). University of Portsmouth, Portsmouth.
  • House, J. R., Lunt, H., Magness, A., & Lyons, J. (2003). Testing the effectiveness of techniques for reducing heat strain in royal navy nuclear, biological and chemical cleansing stations’ teams. Journal of The Royal Naval Medical Service, 89, 27–34.
  • House, J., Lunt, H., Taylor, R., House, C., Lyons, J., & Milligan, G. (2009). Reducing heat strain using phase-change cooling vests with different melting temperatures. Proceedings 13th International Conference on Environmental Ergonomics (pp. 215–220). August 2nd–7th, Boston, MA.
  • ISO 11092. (1993). Textiles ± Physiological effects ± Measurements of thermal and water–vapour resistance under steady-state conditions (sweating guarded-hotplate test). Geneva: International Organization for Standardization.
  • ISO 9920. (1995). Estimation of the thermal insulation and evaporative resistance of a clothing ensemble. Geneva: International Organization for Standardization.
  • ISO 1583. (2003). Clothing ± Physiological effects ± Measurement of thermal insulation by means of a thermal manikin. Geneva: International Organization for Standardization.
  • ISO TR 11079. (1993). Evaluation of cold environments- determination of required clothing insulation (IREQ). Geneva: International Organization for Standardization.
  • Jennings, D. C. (1966). Water-cooled space suit. Spacecraft, 3, 1251–1256.
  • Johnston, N. J., King, A. T., Protheroe, R., & Childs, C. (2006). Body temperature management after severe traumatic brain injury: Methods and protocols used in the United Kingdom and Ireland. Resuscitation, 70, 254–262. doi:10.1016/j.resuscitation.2006.02.010
  • Jurgens, F. (1968). Aircrew cooling study (Report No. TG-945). Baltimore, MD: The Johns Hopkins University, Applied Physics Laboratory.
  • Kamon, E., Kenney, W. L., Deno, N. S., Soto, K. I., & Carpenter, A. J. (1986). Readdressing personal cooling with ice. American Industrial Hygiene Association Journal, 47, 293–298. doi:10.1080/15298668691389784
  • Kaufman, J. W. (2001). Cooling individuals using encapsulating protective clothing in a hot humid environment. Symposium on Blowing Hot and Cold: Protecting Against Climatic Extremes, 8–10 October, Dresden, Germany.
  • Kaufman, W. C., & Pittman, J. C. (1966). A simple liquid transport cooling system for aircrew members. Aerospace Medicine, 37, 1239–1243.
  • Keim, S. M., Guisto, J. A., & Sullivan Jr, J. B. (2002). Environmental thermal stress. Annals of Agricultural and Environmental Medicine, 9, 1–15.
  • Kim, J., Coca, A., Williams, W., & Roberge, R. (2011). Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble. Journal of Occupational and Environmental Hygiene, 8, 409–416. doi:10.1080/15459624.2011.584840
  • Kinnman, J., Andersson, T., & Andersson, G. (2000). Effect of cooling suit treatment in patients with multiple sclerosis evaluated by evoked potentials. Scandinavian Journal of Rehabilitation Medicine, 32, 16–19. doi:10.1080/003655000750045686
  • Kocjan, N., Perret, C., Bogerd, C. P., Rossi, M. R., & Daanen, H. (2009). Influence of pre-cooling intensity on vasomotor response and metabolic heat production. Proceedings of 13th International Conference on Environmental Ergonomics. (pp. 269–273). August 2nd–7th, Boston, MA.
  • Konz, S., & Aurora, D. (1973). An evaluation of a dynamic cooling shirt. ASHRAE Transactions, 1, 52–61.
  • Konz, S. A. (1984). Personal cooling garments – A review. ASHRAE Transactions, 90, 499–517.
  • Ku, Y. T., Montgomery, L. D., & Webbon, B. W. (1996). Hemodynamic and thermal responses to head and neck cooling in men and women. American Journal of Physical Medicine & Rehabilitation, 75, 443–450.
  • Kuznetz, L. H. (1980). Automatic control of human thermal comfort by a liquid-cooled garment. Journal of Biomechanical Engineering, 102, 155–161. doi:10.1115/1.3138213
  • Kwon, O. K., Kwon, A. H., Kato, M., Hayashi, C., & Tokura, H. (1998). The effects of local cooling on thermophysiological response in participants wearing dust-free garments. International Journal of Occupational Safety and Ergonomics, 4, 57–67.
  • Li, Y. (2001). The science of clothing comfort. Textile Progress, 31(1–2), 1–135. doi:10.1080/00405160108688951
  • Li, Y., & Zhu, Q. (2004). A model of heat and moisture transfer in porous textiles with phase change materials. Textile Research Journal, 74, 447–457. doi:10.1177/004051750407400512
  • London, R. C. (1969). A review of work on water cooled suits (Technical Memo EP418), Royal Aircraft Establishment, Manhattan, KS.
  • Mairiaux, P., Nullens, W., Fesler, R., Brasseur, L., & Detry, J. M. (1977). Evaluation of the effects of cooling clothes on the adaptation to prolonged exertion in high temperatures by miners. Revue de l'Institut d'hygiène des mines, 32, 99–122.
  • Marino, F. E. (2002). Methods, advantages, and limitations of body cooling for exercise performance. British Journal of Sports Medicine, 36, 89–94. doi:10.1136/bjsm.36.2.89
  • Mattila, H. (Ed.). (2006). Intelligent textiles and clothing. Cambridge: Woodhead/The Textile Institute.
  • Mayer, S. A., Kowalski, R. G., Presciutti, M., Ostapkovich, N. D., McGann, E., Fitzsimmons, B. F., … Commichau, C. (2004). Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Critical Care Medicine, 32, 2508–2515.
  • McCullough, E. A., & Eckels, S. (2009). Evaluation of personal cooling systems for soldiers. Proceedings 13th International Conference on Environmental Ergonomics (pp. 200–204). August 2nd–7th, Boston, MA.
  • McLellan, T. M. (1993). Work performance at 40°C with Canadian Forces biological and chemical protective clothing. Aviation, Space and Environmental Medicine, 64, 1094–1100.
  • McLellan, T. M. (2002). Cooling options for shipboard personnel operating in hot environments (Report No. AD-A409882DRDC-TR-2002-185). Defence R&D Canada, Toronto: Technical Report.
  • McLellan, T. M. (2007). The efficacy of an air-cooling vest to reduce thermal strain for Light Armour Vehicle personnel (Report No. DRDC-TORONTO-TR-2007-002). Defence R&D Canada, Toronto: Technical Report.
  • McLellan, T. M., Bell, D. G., & Frim, J. (1999). Efficacy of air and liquid cooling during light and heavy exercise while wearing NBC clothing. Aviation, Space and Environmental Medicine, 70, 802–811.
  • Meyer-Heim, A., Rothmaier, M., Weder, M., Kool, J., Schenk, P., & Kesselring, J. (2007). Advanced lightweight cooling-garment technology: Functional improvements in thermosensitive patients with multiple sclerosis. Multiple Sclerosis Journal, 13, 232–237. doi:10.1177/1352458506070648
  • Mokhtari, Y. M., & Sheikhzadeh, M. (2013). A new method for assessing the performance of a phase change material cooling garment. International Journal of Advanced Engineering Applications, 2, 47–53.
  • Mondal, S. (2008). Phase change materials for smart textiles –An overview. Applied Thermal Engineering, 28, 1536–1550. doi:10.1016/j.applthermaleng
  • Morrison, S., Sleivert, G. G., & Cheung, S. S. (2004). Passive hyperthermia reduces voluntary activation and isometric force production. European Journal of Applied Physiology, 91, 729–736. doi:10.1007/s00421-004-1063-z
  • Muir, I. H., Bishop, P. A., & Ray, P. (1999). Effects of novel ice-cooling technique on work in protective clothing at 28°C, 23°C, and 18°C WBGTs. American Industrial Hygiene Association Journal, 60, 96–104. doi:10.1080/00028899908984427
  • Myhre, L. G., & Muir, I. (2005). The effect of 30-minutes of upper body cooling (ice vest) on skin and core temperatures during rest in a comfortable environment (Ta ¼ 228C). Proceedings of the 11th international conference on environmental ergonomics (pp. 52–54). May 22–26, Lund, Sweden.
  • Nadel, E. R., Mitchell, G. W., & Stolwijk, J. A. J. (1973). Differential thermal sensitivity in the human skin. Pflügers Archive, 340, 71–76. doi:10.1007/bf00592198
  • Nag, P. K., Pradhan, C. K., Nag, A., Ashtekar, S. P., & Desai, H. (1998). Efficacy of a water-cooled garment for auxiliary body cooling in heat. Ergonomics, 41, 179–187. doi:10.1080/001401398187233
  • Nagano, K., Mochida, T., Takeda, S., Doman, R., & Rebow, M. (2003). Thermal characteristics of manganese(II) nitrate hexahydrate as a phase change material for cooling systems. Applied Thermal Engineering, 23, 229–241.
  • Nam, J., Branson, D. H., Cao, H., Jin, B., Peksoz, S., Farr, C., & Ashdown, S. P. (2005). Fit analysis of liquid cooled vest protopypes using 3D body scanning technology. Journal of Textile and Apparel, Technology and Management, 4, 1–13.
  • Nelson, G. (2001). Microencapsulation in textile finishing. Review of Progress in Coloration, 31, 57–64. doi:10.1111/j.1478-4408.2001.tb00138.x
  • Nishihara, N., Tanabe, T., Hayama, H., & Komatsu, M. (2002). A cooling vest for working comfortable in a moderately hot environment. Journal of Physiological Anthropology, 21, 75–82. doi:10.2114/jpa.21.75
  • Novak, L. (1991). Our experience in the evaluation of the thermal comfort during the space flight and in the simulated space environment. Acta Astronautica, 23, 179–186. doi:10.1016/0094-5765(91)90117-n
  • Nunneley, S. A. (1970). Water cooled garments – A review. Space Life Sciences, 2, 335–360. doi:10.1007/bf00929293
  • Nunneley, S. A. (1989). Heat stress in protective clothing. Interactions among physical and physiological factors. Scandinavian Journal of Work, Environment and Health, 15, 52–57.
  • Nunneley, S. A., Diesel, D. A., Byrne, T. J., & Chen, Y. T. (1998). Recent experiments with personal cooling for aircrews. Proceedings of the International Conference on Enviromental Ergonomics (pp. 247–250). San Diego, CA.
  • Nunneley, S. A., Reader, D. C., & Maldonado, R. J. (1982). Head temperature effects on physiology, comfort, and performance during hyperthermia. Aviation, Space and Environmental Medicine, 53, 623–628.
  • Nunneley, S. A., Stribley, R. F., & Allan, J. R. (1981). Heat stress in front and rear cockpits of F-4 aircraft. Aviation, Space and Environmental Medicine, 52, 287–290.
  • Nunneley, S. A., Troutman Jr, S. J., & Webb, P. (1971). Head cooling in work and heat stress. Aerospace Medicine, 42, 64–68.
  • Nyberg, K. L., Diller, K. R., & Wissler, E. H. (2000). Automatic control of thermal neutrality for space suit applications using a liquid cooling garment. Aviation, Space and Environmental Medicine, 71, 904–913.
  • Nyberg, K. L., Diller, K. R., & Wissler, E. H. (2001). Model of human/liquid cooling garment interaction for space suit automatic thermal control. Journal of Biomechanical Engineering, 123, 114–120. doi:10.1115/1.1336147
  • Onofrei, E., Rocha, A. M., & Catarino, A. (2010). Textiles integrating PCMs – A review. Buletinul Institului Politehnic Iaşi, t. LVI (LX) f. 2, 100–110.
  • Parsons, K. (2003). Human thermal environments (2nd ed.). London: Taylor & Francis.
  • Pause, B. (1995). Development of heat and cold insulating membrane structures with phase change material. Journal of Coated Fabric, 25, 59–68. doi:10.1177/152808379502500107
  • Pause, B. (2000a). Textiles with improved thermal capabilities through the application of phase change material (PCM) microcapsules. Melliand Textilberichte, 81, 753–754.
  • Pause, B. (2000b). New possibilities in medicine: Textiles treated with PCM microcapsules (Lecture No. 627). 10th International Symposium for Technical Textiles, Nonwovens and Textile Reinforced Materials (p. 7).
  • Pause, B. (2002). Driving more comfortably with phase change materials. Technical Textiles International, 11, 24–27.
  • Perez, S. A., Charles, J. B., Fortner, G. W., Hurst IV, V., & Meck, J. V. (2003). Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviation, Space and Environmental Medicine, 74, 753–757.
  • Pimental, N. A., & Avellini, B. A. (1989). Effectiveness of Three portable cooling systems in reducing heat stress(Report No. ADA206959). Natick, MA: Navy Clothing and Textile Research Facility.
  • Pimental, N. A., Avellini, B. A., & Heaney, J. H. (1992). Ability of a passive microclimate cooling vest to reduce thermal strain and increase tolerance to work in the heat. Proceedings of the Fifth International Conference on Environmental Ergonomics (pp. 226–227). TNO, Maastricht, The Netherlands.
  • Pimental, N. A., Cosimini, H. M., Sawak, M. N., & Wenqer, C. B. (1987). Effectiveness of an air-cooled vest using selected air temperature and humidity combinations. Aviation Space and Environmental Medicine, 58, 119–124.
  • Proctor, T. D. (1988). Conditioned clothing: The needs of industry and the wearer. Ergonomics, 31, 987–990. doi:10.1080/00140138808966737
  • Psikuta, A. (2009). Development of an ‘artificial human’ for clothing research (PhD thesis). De Montfort University, Leicester, UK.
  • Psikuta, A., Richards, M., & Fiala, D. (2008). Single-sector thermophysiological human simulator. Physiological Measurement, 29, 181–192.
  • Psikuta, A., & Rossi, R. (2009). The novel single-sector human simulator to study clothing effects on physiological response. The Proceedings 13th International Conference on Environmental Ergonomics (pp. 98–102). Boston, MA.
  • Ramirez, L. R., Hagam, R. D., Shannon, M. P., Bennett, B. L., & Hodgdon, J. A. (1994). Cool vests worn under firefighting ensemble reduces heat strain during exercise and recovery (Report No. 95-2). San Diego, CA: Naval Health Research Center.
  • Reffeltrath, P., Daanen, H., & den Hartog, E. (2002). Efficiency of an individual air-cooling system for helicopter pilots. Proceedings of the 10th International Conference on Environmental Ergonomics (p. 547). University of Fukuoka, Fukuoka.
  • Reinertsen, R. E., Faerevik, H., Holbø, K., Nesbakken, R., Reitan, J., Røyset, A., … Thi, M. (2008). Optimizing the performance of phase change material in personal protective clothing systems. International Journal of Occupational Safety and Ergonomics, 14, 43–53.
  • Richards, M. G. M., Psikuta, A., & Fiala, D. (2006). Current development of thermal sweating manikins at Empa. In J. Fan (Ed.) Conference proceedings on thermal manikins and modelling (pp. 173–179). October 16–18, The Hong Kong Polytechnic University, Hong Kong.
  • Richardson, G., Cohen, J. B., McPhate, D. C., & Hayes, P. A. (1988). A personal conditioning system based on a liquid-conditioned vest and a thermoelectric supply system. Ergonomics, 31, 1041–1047. doi:10.1080/00140138808966743
  • Roth, E. M. (1966). Bioenergetics of space suits for lunar exploration: A literature review. Washington, DC: Scientific and Technical Information Division, National Aeronautics and Space Administration.
  • Rugh, J. P., Farrington, R. B., Bharathan, D., Vlahinos, A., Burke, R., Huizenga, C., & Zhang, H. (2004). Predicting human thermal comfort in a transient nonuniform thermal environment. European Journal Applied Physiology, 92, 721–727. doi:10.1007/s00421-004-1125-2
  • Rupp, J. (1999). Interactive textiles regulate body temperature. International Textile Bulletin, 45, 58–59.
  • Salaun, F., Devaux, E., Bourbigot, S., & Rumeau, P. (2009). Development of phase change materials in clothing part I: Formulation of microencapsulated phase change. Textile Research Journal, 80, 195–205. doi:10.1177/0040517509093436
  • Scott, R. A. (Ed.). (2005). Textiles for Protection. Cambridge: Woodhead/The Textile Institute.
  • Selkirk, G. A., & McLellan, T. M. (2004). Physical work limits for Toronto firefighters in warm environments. Journal of Occupational and Environmental Hygiene, 1, 199–212. doi:10.1080/15459620490432114
  • Sethu, P., & Mastrangelo, C. H. (2003). Polyethylene glycol (PEG)-based actuator for nozzle–diffuser pumps in plastic microfluidic systems. Sensors and Actuators A: Physical, 104, 283–289. doi:10.1016/s0924-4247(03)00031-1
  • Shapiro, Y., Pandolf, K. B., Sawka, M. N., Toner, M. M., Winsmann, F. R., & Goldman, R. F. (1982). Auxiliary cooling: comparison of air-cooled vs. water-cooled vests in hot-dry and hot-wet environments. Aviation, Space, and Environmental Medicine, 53, 785–789.
  • Shim, H., McCullough, E. A., & Jones, B. W. (2001). Using phase change materials in clothing. Textile Research Journal, 71, 495–502. doi:10.1177/004051750107100605
  • Shitzer, A., Chato, J. C., & Hertig, B. A. (1973). Thermal protective garment using independent regional control of coolant temperature. Aerospace Medicine, 44, 49–59.
  • Shvartz, E. (1970). Effect of a cooling hood on physiological responses to work in a hot environment. Journal of Applied Physiology, 29, 36–39.
  • Shvartz, E. (1972). Efficiency and effectiveness of different water cooled suits – A review. Aerospace Medicine, 43, 488–491.
  • Shvartz, E. (1976). Effect of neck versus chest cooling on responses to work in heat. Journal of Applied Physiology, 40, 668–672.
  • Shvartz, E., Aldjem, M., Ben-Mordechai, J., & Shapiro, Y. (1974). Objective approach to a design of a whole-body, water-cooled suit. Aerospace Medicine, 45, 711–715.
  • Sleivert, G. G., Cotter, J. D., Robers, W. S., & Febbraio, M. A. (2001). The influence of whole body vs. torso precooling on physiological strain and performance of high-intensity exercise in the heat. Comparative Biochemistry and Physiology -- Part A: Molecular & Integrative Physiology, 128, 657–666. doi:10.1016/S1095-6433(01)00272-0
  • Smolander, J., Kuklane, K., Gavhed, D., Nilsson, H., & Holmer, I. (2004). Effectiveness of a light-weight icevest for cooling while wearing fire fighter’s protective clothing in the heat. International Journal of Occupational Safety and Ergonomics, 10, 111–117.
  • Speckman, K. L., Allan, J. R., Sawka, M. N., Young, A. J., Muza, S. R., & Pandolf, K. B. (1988). A review: Microclimate cooling of protective overgarments in the heat (Report No.ADA194778). Natick, MA: US Army Research Institute of Environmental Medicine.
  • Stapleton, J. M., Lan, C. Q., Hardcastle, S. G., & Kenny, G. P. (2009). The effect of wearing a cooling vest to alleviate thermal strain during moderate intensity work. Proceedings 13th International Conference on Environmental Ergonomics (pp. 255–259). August 2nd–7th, Boston, MA.
  • Starr, J. B. (1970). Fluidic temperature control for liquid-cooled space suits (pp. 179–189). (NASA-SP-234). Portable Life Support Systems.
  • Starr, J. B., & Merrill, G. L. (1968). Fluidic temperature control for liquid-cooled flight suits (NADC AC-6818). Johnsville, PA: Naval Air Development Center.
  • Strydom, N. B., Mitchell, D., Van Rensburg, A., & Van Graan, C. H. (1973). The physical aspects of microclimate suits. Tunnels and Tunneling, 9, 480–484.
  • Strydom, N. B., Mitchell, D., Van Rensburg, A., & Van Graan, C. H. (1974). The design, construction, and use of a practical ice-jacket for miners. Journal of South African Institute of Mining and Metallurgy, 75, 22–27.
  • Syndulko, K., Jafari, M., Woldanski, A., Baumhefner, R. W., & Tourtellotte, W. W. (1996). Effects of temperature in multiple sclerosis: A review of the literature. Journal of NeuroEngineering and Rehabilitation, 10, 23–34. doi:10.1177/154596839601000104
  • Taylor, N. A. (2006). Challenges to temperature regulation when working in hot environments. Ind Health, 44, 331–344. doi:10.2486/indhealth.44.331
  • Teal, W. (1996). A thermal manikin test method for evaluating the performance of liquid circulating cooling garments. International Conference; 7th, Environmental Ergonomics (pp. 355–358).
  • Thornley, L. J., Cheung, S. S., & Sleivert, G. G. (2003). Responsiveness of thermal sensors to nonuniform thermal environments and exercise. Aviation, Space, and Environmental Medicine, 74, 1135–1141.
  • Troutman Jr, S. J. (1969). Automatic control of water cooling Symposium on Individual Cooling (pp. 262–280). Kansas: Kansas State University.
  • Troutman, S. J., & Webb, P. (1969). Automatic control of water cooled suits from differential temperature measurements Final report (Report No. N69-37975). NASA Electronics Research Center.
  • Vallerand, A. L., Michas, R. D., Frim, J., & Ackless, K. N. (1991). Heat balance of subjects wearing protective clothing with a liquid-or air-cooled vest. Aviation, Space, and Environmental Medicine, 62, 383–391.
  • Veghte, J. H. (1965). Efficacy of pressure suit cooling systems in hot environments. Aerospace Medicine, 36, 964–967.
  • Verma, P., Varun, & Singal, S. K. (2008). Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12, 999–1031.
  • Vernieuw, C. R., Stephenson, L. A., & Kolka, M. A. (2007). Thermal comfort and sensation in men wearing a cooling system controlled by skin temperature. Human Factors, 49, 1033–1044.
  • Waligora, J. S., & Michel, E. L. (1968). Application of conductive cooling for working men in a thermally isolated environment. Aerospace Medicine, 39, 485–467.
  • Webb, P. (1970). Automatic cooling: Strategies, designs, and evaluations (NASA Report SP-234). Washington, DC.
  • Webb, P., & Annis, J. A. (1967). Bio-thermal responses to varied work programs in men kept thermally neutral by water cooled clothing (NASA CR-739 (pp. 1–65)). Washington, DC: National Aeronautics and Space Administration (NASA Contract Rep NASA CR).
  • Webb, P., & Annis, J. F. (1968). Cooling required to suppress sweating during work. Journal of Applied Physiology, 25, 489–493.
  • Webb, P., Annis, J. F., & Troutman Jr, S. J. (1968). Automatic control of water cooling in space suits. Contract Rep. (NASA CR-1085 (pp. 1–84)). Washington, DC: National Aeronautics and Space Administration (NASA Contract Rep NASA CR).
  • Webb, P., Troutman, S. J., & Annis, J. F. (1970). Automatic cooling water cooled space suits. Aerospace Medicine, 41, 269.
  • Weber, S. (1999). Air cooling garment for medical personnel, United States patents, US Patent No. 5,970,519. Washington, DC: US Patent.
  • Webster, J., Holland, E. J., Sleivert, G., Laing, B. M., & Niven, B. N. (2005). A light-weight cooling vest enhances performance of athletes in the heat. Ergonomics, 48, 821–837. doi:10.1080/00140130500122276
  • White, M. K., Glenn, S. P., Hudnall, J., Rice, C., & Clark, S. (1991). The effectiveness of ice- and Freon-based personal cooling systems during work in fully encapsulating suits in the heat. American Industrial Hygiene Association Journal, 52, 127–135.
  • Williams, B. A., & Shitzer, A. (1974). Modular liquid-cooled helmet liner for thermal comfort. Aerospace Medicine, 45, 1030–1036.
  • Wortz, E. C., Edwards, D. K., & Harrington, T. J. (1964). New techniques in pressure suit cooling.Aerospace Medicine, 35, 978–984.
  • Wyon, D. P. (1989). Use of thermal manikins in environmental ergonomics. Scandinavian Journal of Work, Environment & Health, 15, 84–94.
  • Xu, X., Berglund, L. G., Cheuvront, S. N., Endrusick, T. L., & Kolka, M. A. (2004). Model of human thermoregulation for intermittent regional cooling. Aviation, Space and Environmental Medicine, 75, 1065–1069.
  • Xu, X., Hexamer, M., & Werner, J. (1999). Multi-loop control of liquid cooling garment systems. Ergonomics, 42, 282–298. doi:10.1080/001401399185658
  • Ying, B., Kwok, Y., Li, Y., Zhu, Q., & Yeung, C. (2004). Assessing the performance of textiles incorporating phase change materials. Polymer Testing, 23, 541–549. Retrieved from http://www.sciencedirect.com/science/article/pii/S0142941803001685
  • Yoshimi, N., Tanabe, S., Takaki, R., Hayama, H., & Komatsu, M. (1998). A cooling vest: Is it useful in the high temperature telecommunication machine room? Proceedings of the 2nd International Conference on Human Environment System. Yokohama, Japan.
  • Zalba, B., Marin, J. M., Cabeza, L. F., & Mehling, H. (2003). Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Applied Thermal Engineering, 23, 251–283. doi:10.1016/S1359-4311(02)00192-8
  • Zhang, X. (2001). Heat-storage and thermo-regulated textiles and clothing. In X. M. Tao (Ed.), Smart fibres, fabrics and clothing (pp. 34–56). Cambridge: Woodhead.
  • Zingano, B. W. (2001). A discussion on thermal comfort with reference to bath water temperature to deduce a midpoint of the thermal comfort temperature zone. Renewable Energy, 23, 41–47. doi:10.1016/S0960-1481(00)00101-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.