229
Views
12
CrossRef citations to date
0
Altmetric
Articles

Geometrical modelling of orthogonal/layer-to-layer woven interlock carbon reinforcement

&
Pages 725-735 | Received 06 Apr 2014, Accepted 18 Jun 2014, Published online: 21 Jul 2014

References

  • Backer, S. (1948). The relationship between the structural geometry of a textile fabric and its physical properties I: Literature review. Textile Research Journal, 18, 650–658.10.1177/004051754801801102
  • Behera, B. K., & Dash, B. P. (2013). An experimental investigation into structure and properties of 3D-woven aramid and PBO fabrics. The Journal of The Textile Institute, 104, 1337–1344.10.1080/00405000.2013.805873
  • Bilisik, K., Karaduman, N. S., Bilisik, N. E., & Bilisik, H. E. (2013). Three-dimensional fully interlaced woven preforms for composites. Textile Research Journal, 83, 2060–2084.10.1177/0040517513487791
  • Bogdanovich, A. E., & Mohamed, M. H. (2009). Three-dimensional reinforcements for composites. SAMPE Journal, 45, 8–28.
  • Buchanan, S., Grigorash, A., Quinn, J. P., McIlhagger, A. T., & Young, C. (2009). Modelling the geometry of the repeat unit cell of three-dimensional weave architectures. The Journal of The Textile Institute, 101, 679–685.
  • Chinciu, D. (1998). Bazele proiectarii tesaturilor [The basics of woven fabric design]. Iasi: BIT.
  • Chiu, C.-H., & Cheng, C.-C. (2003). Weaving method of 3D woven preforms for advanced composite materials. Textile Research Journal, 73, 37–41.10.1177/004051750307300107
  • Dash, B. P., Behera, B. K., Mishra, R., & Militky, J. (2013). Modeling of internal geometry of 3D woven fabrics by computation method. The Journal of The Textile Institute, 104, 312–321.10.1080/00405000.2012.720850
  • Desplentere, F., Lomov, S. V., Woerdeman, D. L., Verpoest, I., Wevers, M., & Bogdanovich, A. (2005). Micro-CT characterization of variability in 3D textile architecture. Composites Science and Technology, 65, 1920–1930.10.1016/j.compscitech.2005.04.008
  • Dixit, A., & Mali, H. S. (2013). Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: A review. Mechanics of Composite Materials, 49(1), 1–20.10.1007/s11029-013-9316-8
  • Gokarneshan, N., & Alagirusamy, R. (2009). Weaving of 3D fabrics: A critical appreciation of the developments. Textile Progress, 41(1), 1–58.10.1080/00405160902804239
  • Hamilton, J. B. (1964). 7—A general system of woven-fabric geometry. Journal of the Textile Institute Transactions, 55, T66–T82.10.1080/19447026408660209
  • Karahan, M., Lomov, S. V., Bogdanovich, A. E., Mungalov, D., & Verpoest, I. (2010). Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric composite. Composites Part A: Applied Science and Manufacturing, 41, 1301–1311.10.1016/j.compositesa.2010.05.014
  • Kelly, A. (2006). Composite materials after seventy years. Journal of Materials Science, 41, 905–912.10.1007/s10853-006-6569-9
  • Khokar, N. (1996). 3D fabric-forming processes: Distinguishing between 2D-weaving, 3D-weaving and an unspecified non-interlacing process. The Journal of The Textile Institute, 87, 97–106.10.1080/00405009608659059
  • Khokar, N. (2001). 3D-weaving: Theory and practice. The Journal of The Textile Institute, 92, 193–207.10.1080/00405000108659570
  • Leaf, G. A. V., & Glaskin, A. (1955). 43—The geometry of a plain knitted loop. Journal of The Textile Institute Transactions, 46, T587–T605.10.1080/19447027.1955.10750345
  • Lomov, S. V., Gusakov, A. V., Huysmans, G., Prodromou, A., & Verpoest, I. (2000). Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 60, 2083–2095.10.1016/S0266-3538(00)00121-4
  • Lomov, S. V., Huysmans, G., Luo, Y., Parnas, R. S., Prodromou, A., Verpoest, I., Phelan, F. R. (2001). Textile composites: Modelling strategies. Composites Part A: Applied Science and Manufacturing, 32, 1379–1394.10.1016/S1359-835X(01)00038-0
  • Lomov, S. V., Huysmans, G., & Verpoest, I. (2001). Hierarchy of textile structures and architecture of fabric geometric models. Textile Research Journal, 71, 534–543. doi:10.1177/00405175010710061110.1177/004051750107100611
  • Love, L. (1954). Graphical relationships in cloth geometry for plain, twill, and sateen weaves. Textile Research Journal, 24, 1073–1083.10.1177/004051755402401208
  • Mohamed, M. (2008, April 10–11). Recent advances in 3D weaving. Paper presented at the First world conference on 3D fabrics and their applications, Manchester, UK.
  • Mouritz, A. P., Gellert, E., Burchill, P., & Challis, K. (2001). Review of advanced composite structures for naval ships and submarines. Composite Structures, 53, 21–42.10.1016/S0263-8223(00)00175-6
  • Nauman, S., Cristian, I., & Boussu, F. (2012). Geometrical modelling of angle warp interlock fabrics. The Journal of The Textile Institute, 103, 766–776.10.1080/00405000.2011.606981
  • Nauman, S., Cristian, I., Boussu, F., Legrand, X., & Koncar V. (2009, May 7–8). Weaving of 3D interlock layer to layer carbon glass reinforcement on a conventional loom. Paper presented at the 2nd International Conference on Textile and Clothing, Lahore, Pakistan.
  • Padaki, N. V., Alagirusamy, R., Deopura, B. L., & Fangueiro, R. (2010). Studies on preform properties of multilayer interlocked woven structures using fabric geometrical factors. Journal of Industrial Textiles, 39, 327–346.10.1177/1528083709349885
  • Peirce, F. T. (1947). Geometrical principles applicable to the design of functional fabrics. Textile Research Journal, 17, 123–147.10.1177/004051754701700301
  • Quinn, J., McIlhagger, R., & McIlhagger, A. T. (2003). A modified system for design and analysis of 3D woven preforms. Composites Part A: Applied Science and Manufacturing, 34, 503–509.10.1016/S1359-835X(03)00084-8
  • Quinn, J. P., Hill, B. J., & McIlhagger, R. (2001). An integrated design system for the manufacture and analysis of 3-D woven preforms. Composites Part A: Applied Science and Manufacturing, 32, 911–914.10.1016/S1359-835X(01)00007-0
  • Seyam, A.-F. M., & Ince, M. E. (2013). Generalized geometric modeling of three-dimensional orthogonal woven preforms from spun yarns. The Journal of The Textile Institute, 104, 914–928.10.1080/00405000.2013.765088
  • Stig, F., & Hallström, S. (2013). Influence of crimp on 3D-woven fibre reinforced composites. Composite Structures, 95, 114–122.10.1016/j.compstruct.2012.07.022
  • Wu, Z. (2009). Three-dimensional exact modeling of geometric and mechanical properties of woven composites. Acta Mechanica Solida Sinica, 22, 479–486.10.1016/S0894-9166(09)60299-8
  • Yi, H. L., & Ding, X. (2004). Conventional approach on manufacturing 3D woven preforms used for composites. Journal of Industrial Textiles, 34, 39–50.10.1177/1528083704045847
  • Zeng, X., Brown, L. P., Endruweit, A., Matveev, M., & Long, A. C. (2014). Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties. Composites Part A: Applied Science and Manufacturing, 56, 150–160.10.1016/j.compositesa.2013.10.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.