428
Views
4
CrossRef citations to date
0
Altmetric
Articles

Simulation of a textile sleeve on a manikin arm undergoing elbow flexion: effect of arm-sleeve friction

, &
Pages 1135-1146 | Received 14 Aug 2014, Accepted 13 Oct 2014, Published online: 20 Nov 2014

References

  • ANSI/ASHRAE. (2013). Thermal environmental conditions for human occupancy ( Standard 55-2013). Atlanta, GA. Retrieved from www.ashrae.org
  • Briscoe, B. J., & Motamedi, F. (1992). The ballistic impact characteristics of aramid fabrics: The influence of interface friction. Wear, 158, 229–247.10.1016/0043-1648(92)90041-6
  • Cardello, A. V. (2008). The sensory properties and comfort of military fabrics and clothing (Military Textiles). Cambridge: Woodhead Publishing.
  • Cheng, Y., Niu, J., & Gao, N. (2012). Thermal comfort models: A review and numerical investigation. Building and Environment, 47, 13–22.10.1016/j.buildenv.2011.05.011
  • Dong, Z., Manimala, J. M., & Sun, C. T. (2010). Mechanical behavior of silica nanoparticle-impregnated Kevlar fabrics. Journal of Mechanics of Materials and Structures, 5, 529–548.10.2140/jomms
  • Duan, Y., Keefe, M., Bogetti, T. A., & Cheeseman, B. A. (2005). Modeling the role of friction during ballistic impact of a high-strength plain-weave fabric. Composite Structures, 68, 331–337.10.1016/j.compstruct.2004.03.026
  • Erol, O., & Keefe, M. (2014, June). Numerical modeling techniques for woven textiles. SAMPE Tech 2014, Seattle, WA.
  • Fiala, D., Psikuta, A., Jendritzky, G., Paulke, S., Nelson, D. A., Lichtenbelt, W. D., & Frijns, A. J. H. (2010). Physiological modeling for technical, clinical, and research applications. Frontiers in Bioscience, S2, 939–968.10.2741/S112
  • Grujicic, M., Bell, W. C., Arakere, G., He, T., Xie, X., & Cheeseman, B. A. (2010). Development of a meso-scale material model for ballistic fabric and its use in flexible-armor protection systems. Journal of Materials Engineering and Performance, 19, 22–39.10.1007/s11665-009-9419-5
  • Grujicic, M., Hariharan, A., Pandurangan, B., Yen, C. F., Cheeseman, B. A., Wang, Y., … Zheng, J. Q. (2012). Fiber-level modeling of dynamic strength of Kevlar KM2 ballistic fabric. Journal of Materials Engineering and Performance, 21, 1107–1119.10.1007/s11665-011-0006-1
  • Hallquist, J. O. (2006). LS-DYNA theory manual. Livermore, CA: Livermore Software Technology Corporation.
  • Hill, J. L., & Braun, R. D. (2013, March). Implementation of a mesomechanical material model for IAD fabrics within LS-Dyna. AIAA Aerodynamics Decelerator Systems (ADC) Conference, Daytona Beach, Florida.
  • Hong, L., Dongsheng, C., Qufu, W., & Ruru, P. (2011). A study of the relationship between clothing pressure and garment bust strain, and Young’s modulus of fabric, based on a finite element model. Textile Research Journal, 81, 1307–1319.10.1177/0040517510399961
  • Horsfall, I., Champion, S. M., & Watson, C. H. (2005). The development of a quantitative flexibility test for body armour and comparison with wearer trials. Applied Ergonomics, 36, 283–292.10.1016/j.apergo.2005.01.005
  • Hou, Y., Jiang, L., Sun, B., & Gu, B. (2013). Strain rate effects of tensile behaviors of 3-D orthogonal woven fabric: Experimental and finite element analyses. Textile Research Journal, 83, 337–354.10.1177/0040517512461706
  • Hu, J. (2008). Fabric testing. Cambridge: Woodhead Publishing.
  • Ivanov, I., & Tabiei, A. (2002). Flexible woven fabric micromechanical material model with fiber reorientation. Mechanics of Advanced Materials and Structures, 9, 37–51.10.1080/153764902317224860
  • Keefe, M., & Wetzel, E. D. (2013, September). Modeling and simulation of fabric-human interactions. Texcomp-11, Leuven, Belgium.
  • King, M. J., Jearanaisilawong, P., & Socrate, S. (2005). A continuum constitutive model for the mechanical behavior of woven fabrics. International Journal of Solids and Structures, 42, 3867–3896.10.1016/j.ijsolstr.2004.10.030
  • Long, A. C. (2005). Design and manufacture of textile composites. Cambridge: Woodhead Publishing.10.1533/9781845690823
  • Milenkovic, L., Skundric, P., Sokolovic, R., & Nikolic, T. (1999). Comfort properties of defense protective clothings. FACTA UNIVERSITATIS: Working and Living Environmental Protection, 1, 101–106.
  • Mirjalili, S. A., Rafeeyan, M., & Soltanzaded, Z. (2008). The analytical study of garment pressure on the human body using finite elements. Fibers & Textiles in Eastern Europe, 16, 68–73.
  • Nilakantan, G. (2013). Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies. Composite Structures, 104, 1–13.10.1016/j.compstruct.2013.04.001
  • North Carolina State University, College of Textiles, Textile Protection and Comfort Center, Comfort Wear Test. (n.d.). Retrieved from http://www.tx.ncsu.edu/tpacc/comfort-performance/comfort-wear-test.cfm
  • Parsons, E. M., King, M. J., & Socrate, S. (2013). Modeling yarn slip in woven fabric at the continuum level: Simulations of ballistic impact. Journal of the Mechanics and Physics of Solids, 61, 265–292.10.1016/j.jmps.2012.05.005
  • Peng, X., Guo, Z., Du, T., & Yu, W. R. (2013). A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites Part B: Engineering, 52, 275–281.10.1016/j.compositesb.2013.04.014
  • Rao, M. P., Duan, Y., Keefe, M., Powers, B. M., & Bogetti, T. A. (2009). Modeling the effects of yarn material properties and friction on the ballistic impact of a plain-weave fabric. Composite Structures, 89, 556–566.10.1016/j.compstruct.2008.11.012
  • Rao, M. P., Nilakantan, G., Keefe, M., Powers, B. M., & Bogetti, T. A. (2009). Global/local modeling of ballistic impact onto woven fabrics. Journal of Computational Mathematics, 43, 445–467.
  • Schutz, H. G., Cardello, A. V., & Winterhalter, C. (2005). Perceptions of fiber and fabric uses and the factors contributing to military clothing comfort and satisfaction. Textile Research Journal, 75, 223–232.10.1177/004051750507500307
  • Sockalingam, S., Gillespie Jr, J. W., & Keefe, M. (2014). On the transverse compression response of Kevlar KM2 using fiber-level finite element model. International Journal of Solids and Structures, 51, 2504–2517.10.1016/j.ijsolstr.2014.03.020
  • Stahlecker, Z., Mobasher, B., Rajan, S. D., & Pereira, J. M. (2009). Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II: Finite element analysis. International Journal of Impact Engineering, 36, 447–459.10.1016/j.ijimpeng.2008.08.004
  • Sztandrea, L. M., Cardello, A. V., Winterhalter, C., & Schutz, H. (2013). Identification of the most significant comfort factors for textiles from processing mechanical, handfeel, fabric construction, and perceived tactile comfort data. Textile Research Journal, 83, 34–43.
  • Taieb, A. H., Msahli, S., & Sakli, F. (2010). A new approach for optimizing mechanical clothing tactile comfort. Journal of Advanced Research in Mechanical Engineering, 1, 43–51.
  • Xhang, X., Yeung, K. W., & Li, Y. (2002). Numerical simulation of 3D dynamic garment pressure. Textile Research Journal, 72, 245–252.
  • Yanmei, L., Weiwei, Z., Fan, J., & Qingyun, H. (2014). Study on clothing pressure distribution of calf based on finite element method. The Journal of The Textile Institute, 105, 955–961.10.1080/00405000.2013.865883
  • Yeung, K. W., Li, Y., & Zhang, X. (2004). A 3D Biomechanical Human Model for Numerical Simulation of Garment-Body Dynamic Mechanical Interactions During Wear. The Journal of The Textile Institute, 95, 59–79.10.1533/joti.2001.0050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.