294
Views
7
CrossRef citations to date
0
Altmetric
Articles

Simulating the structure and air permeability of needle-punched nonwoven layer

, , &
Pages 1016-1026 | Received 29 Jul 2017, Accepted 24 Oct 2017, Published online: 03 Nov 2017

References

  • Amiot, M., Lewandowski, M., Leite, P., Thomas, M., & Perwuelz, A. (2014). An evaluation of fiber orientation and organization in nonwoven fabrics by tensile, air permeability and compression measurements. Journal of Materials Science, 49, 52–61.10.1007/s10853-013-7323-8
  • Åström, B. T., Pipes, R. B., & Advani, S. G. (1992). On flow through aligned fiber beds and its application to composites processing. Journal of Composite Materials, 26, 1351–1373.
  • Berkalp, O. B. (2006). Air permeability & porosity in spun-laced fabrics. Fibers & TEXTILES in Eastern Europe, 14, 81–85.
  • Biswas, S., & Winoto, S. H. (2000). Prediction of pressure drop in non-woven filter media using a hagen-poiseuille model. Tribology Transactions, 43, 251–256.10.1080/10402000008982336
  • Chapman, R. (2010). Applications of nonwovens in technical textiles (1st ed.). Oxford: Woodhead Publishing.
  • Chernyakov, A. L. (1998). Fluid flow through three-dimensional fibrous porous media. Journal of Experimental and Theoretical Physics, 86, 1156–1166.10.1134/1.558586
  • Choi, M. A., Lee, M. H., Chang, J., & Lee, S. J. (1998). Permeability modeling of fibrous media in composite processing. Journal of Non-Newtonian Fluid Mechanics, 79, 585–598.10.1016/S0377-0257(98)00120-7
  • Das, D., Ishtiaque, S. M., & Das, S. (2015). Influence of fiber cross-sectional shape on air permeability of nonwovens. Fibers and Polymers, 16, 79–85.10.1007/s12221-015-0079-9
  • Debnath, S., Madhusoothanan, M., & Srinivasamoorthy, V. R. (2000). Prediction of Air permeability of needle-punched nonwoven fabrics using artificial neural network and empirical models. Indian Journal of Fibre & Textile Research, 25, 251–255.
  • Feser, J. P., Prasad, A. K., & Advani, S. G. (2006). Experimental characterization of in-plane permeability of gas diffusion layers. Journal of Power Sources, 162, 1226–1231.10.1016/j.jpowsour.2006.07.058
  • Ghali, L., Halimi, M. T., Ben Hassen, M., & Sakli, F. (2014). Effect of blending ratio of fibers on the properties of nonwoven fabrics based of alfa fibers. Advances in Materials Physics and Chemistry, 4, 116–125.10.4236/ampc.2014.46014
  • Gostick, J. T., Fowler, M. W., Pritzker, M. D., Ioannidis, M. A., & Behra, L. M. (2006). In-plane and through-plane gas permeability of carbon fiber electrode backing layers. Journal of Power Sources, 162, 228–238.10.1016/j.jpowsour.2006.06.096
  • Higdon, J. J. L., & Ford, G. D. (1996). Permeability of three-dimensional models of fibrous porous media. Journal of Fluid Mechanics, 308, 341–361.10.1017/S0022112096001504
  • Hutten, I. (2007). Handbook of nonwoven filter media. Oxford: Elsevier.
  • Jaganathan, S., Tafreshi, H. V., & Pourdeyhimi, B. (2008). A realistic approach for modelling permeability of fibrous media: 3-D imaging coupled with simulation. Chemical Engineering Science, 63, 244–252.10.1016/j.ces.2007.09.020
  • Jakšić, N., & Jakšić, D. (2012). In J. Han-Yong (Ed.), Novel theoretical approach to the filtration of nano particles through non-woven fabrics (Chapter. 8) (pp. 205–234). Woven fabrics. InTech.
  • Mahjoob, S., & Vafai, K. (2008). A synthesis of fluid and thermal transport models for metal foam heat exchangers. International Journal of Heat and Mass Transfer, 51, 3701–3711.10.1016/j.ijheatmasstransfer.2007.12.012
  • Nabovati, A., Llewellin, E. W., & Sousa, A. C. M. (2009). A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Composites Part A: Applied Science and Manufacturing, 40, 860–869.10.1016/j.compositesa.2009.04.009
  • Payen, J., Vroman, P., Lewandowski, M., Perwuelz, A., Callé-Chazelet, S., & Thomas, D. (2012). Influence of fiber diameter, fiber combinations and solid volume fraction on air filtration properties in nonwovens. Textile Research Journal, 82(19), 1948–1959.10.1177/0040517512449066
  • Pourdeyhimi, B., & Kim, H. S. (2002). Measuring fiber orientation in nonwovens: The hough transform. Textile Research Journal, 72, 803–809.10.1177/004051750207200909
  • Pourdeyhimi, B., Ramanathan, R., & Dent, R. (1996). Measuring fiber orientation in nonwovens: Part I: Simulation. Textile Research Journal, 66, 713–722.10.1177/004051759606601107
  • Pradhan, A. K., Das, D., Chattopadhyay, R., & Singh, S. N. (2012). Effect of 3D fiber orientation distribution on transverse air permeability of fibrous porous media. Powder Technology, 221, 101–104.10.1016/j.powtec.2011.12.027
  • Ramanujan, S., Pluen, A., McKee, T. D., Brown, E. B., Boucher, Y., & Jain, R. K. (2002). Diffusion and convection in collagen gels: Implications for transport in the tumor interstitium. Biophysical Journal, 83, 1650–1660.10.1016/S0006-3495(02)73933-7
  • Schweers, E., & Löffler, F. (1994). Realistic modelling of the behavior of fibrous filters through consideration of filter structure. Powder Technology, 80, 191–206.10.1016/0032-5910(94)02850-8
  • Skartsis, L., Khomami, B., & Kardos, J. L. (1992). Resin flow through fiber beds during composite manufacturing processes. Part II: Numerical and experimental studies of newtonian flow through ideal and actual fiber beds. Polymer Engineering and Science, 32, 231–239.10.1002/(ISSN)1548-2634
  • Soltani, P. (2014). Structural analysis and 3D simulation of needle-punched nonwoven structures and their effect on permeability ( PhD thesis). Amirkabir University of Technology: Tehran.
  • Soltani, P., Johari, M. S., & Zarrebini, M. (2014). Effect of 3D fiber orientation on permeability of realistic fibrous porous networks. Powder Technology, 254, 44–56.10.1016/j.powtec.2014.01.001
  • Tahir, M. A., & Tafreshi, H. V. (2009). Influence of fiber orientation on the transverse permeability of fibrous media. Physics of Fluids, 21, 1–5.
  • Tamayol, A., & Bahrami, M. (2011). Transverse permeability of fibrous porous media. BioPhysical Review, 83, 046314–046322.
  • Vafai, K. (2005). Handbook of porous media (2nd ed.). London: Taylor and Francis.
  • Van Doormaal, M. A., & Pharoah, J. G. (2009). Determination of permeability in fibrous porous media using the lattice Boltzmann method with application to PEM fuel cells. International Journal for Numerical Methods in Fluids, 59, 75–89.10.1002/fld.v59:1
  • Wang, Q., Maze, B., Tafreshi, H. V., & Pourdeyhimi, B. (2007). Simulating through-plane permeability of fibrous materials with different fiber lengths. Modelling and Simulation in Materials Science and Engineering, 15, 855–868.10.1088/0965-0393/15/8/003
  • White, F. M. (2009). Fluid mechanics (7th ed.). Mack Grow Hill.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.