348
Views
10
CrossRef citations to date
0
Altmetric
Articles

A generalized analytical model for predicting the tensile behavior of 3D orthogonal woven composites using finite deformation approach

, &
Pages 1465-1476 | Received 01 Dec 2016, Accepted 04 Jan 2018, Published online: 10 Jan 2018

References

  • Abolin’sh, D. S. (1966). Compliance tensor for an elastic material reinforced in two directions. Polymer Mechanics, 2(3), 233–237. doi:10.1007/BF00860290
  • Buchanan, S., Grigorash, A., Archer, E., McIlhagger, A., Quinn, J., & Stewart, G. (2010). Analytical elastic stiffness model for 3D woven orthogonal interlock composites. Composites Science and Technology, 70(11), 1597–1604. doi:10.1016/j.compscitech.2010.05.019
  • Buchanan, S., Grigorash, A., Quinn, J. P., McIlhagger, A. T., & Young, C. (2010). Modelling the geometry of the repeat unit cell of three-dimensional weave architectures. The Journal of The Textile Institute, 101(7), 679–685. doi:10.1080/00405000902746586
  • Campbell, F. (2004). Manufacturing processes for advanced composites. Oxford, UK: Elsevier.
  • Cox, B. N., & Dadkhah, M. S. (1995). The macroscopic elasticity of 3D woven composites. Journal of Composite Materials, 29(6), 785–819. Retrieved from http://jcm.sagepub.com/content/29/6/785.abstract10.1177/002199839502900606
  • Daniel, I. M. (2005). Engineering mechanics of composite materials (2nd ed.). New York, NY: Oxford University Press.
  • DERAKANE® 8084 epoxy vinylester resin data sheet. (2006). Ashland Inc. technical bulletin.
  • Hamburger, W. J. (1949). The industrial application of the stress-strain relationship. The Journal of The Textile Institute, 40(7), P700–P720. doi:10.1080/19447014908664694
  • Hearle, J. W. S., & Shanahan, W. J. (1978). An energy method for calculations in fabric mechanics part i: Principles of the method. The Journal of The Textile Institute, 69(4), 81–91. doi:10.1080/00405007808631425
  • Huang, D., & Abdi, F. (2006). Analytical characterization and damage propagation of three dimensional composites. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, RI, USA. 1.
  • Ince, M. (2013). Performance of composites from 3D orthogonal woven preforms in terms of architecture and sample location during resin infusion ( Ph.D.). North Carolina State University, Raleigh.
  • Kawabata, S., & Niwa, M. (1979). 38 – A finite-deformation theory of the 2/2-twill weave under biaxial extension. The Journal of The Textile Institute, 70(10), 417–426. doi:10.1080/00405007908658881
  • Kawabata, S., & Niwa, M. (1982). Objective specification of fabric quality: Mechanical properties and performance. Osaka, Japan: The Textile Machinery Society of Japan.
  • Kawabata, S., Niwa, M., & Kawai, H. (1973a). 3 – The finite-deformation theory of plain-weave fabrics Part I: The biaxial-deformation theory. The Journal of The Textile Institute, 64(1), 21–46. doi:10.1080/00405007308630416
  • Kawabata, S., Niwa, M., & Kawai, H. (1973b). 4 – The finite-deformation theory of plain-weave fabrics. Part II: The uniaxial-deformation theory. The Journal of The Textile Institute, 64(2), 47–61. doi:10.1080/00405007308630417
  • Kemp, A. (1958). An extension of peirce’s cloth geometry to the treatment of nonlinear threads. Journal of Textile Institute, 49, T44–T48.
  • Khokar, N. (1996). 3D fabric-forming processes: Distinguishing between 2D-weaving, 3D-weaving and an unspecified non-interlacing process. The Journal of The Textile Institute, 87(1), 97–106. doi:10.1080/00405009608659059
  • Khokar, N. (2001). 3D-weaving: Theory and practice. The Journal of The Textile Institute, 92(2), 193–207. doi:10.1080/00405000108659570
  • Khokar, N. (2002). Noobing: A nonwoven 3D fabric-forming process explained. The Journal of The Textile Institute, 93(1), 52–74. doi:10.1080/00405000208630552
  • Kregers, A. F., & Melbardis, Y. G. (1978). Determination of the deformability of three-dimensionally reinforced composites by the stiffness averaging method. Polymer Mechanics, 14(1), 1–5. doi:10.1007/BF00859550
  • Kregers, A. F., & Teters, G. A. (1981). Determination of the elastoplastic properties of spatially reinforced composites by the averaging method. Mechanics of Composite Materials, 17(1), 25–31. doi:10.1007/BF00604878
  • Kuo, W., & Pon, B. (1997). Elastic moduli and damage evolution of three-axis woven fabric composites. Journal of Materials Science, 32(20), 5445–5455. doi:10.1023/A:1018695601561
  • Midani, M. (2016). The influence of weave and structural parameters on the performance of composites from 3D orthogonal woven preforms ( Ph.D.). North Carolina State University, Raleigh.
  • Mohamed, M. H., & Zhang, Z. H. (1992). Method of forming variable cross-sectional shaped three-dimensional fabrics ( US Patent 5085252 ed.). Washington, DC: U.S. Patent and Trademark Office.
  • Nagai, K., Yokoyama, A., Maekawa, Z., & Hamada, H. (1994). The stress analysis method for three-dimensional composite materials. Applied Composite Materials, 1(3), 197–216. doi:10.1007/BF00567527
  • Naik, N. K., Azad, S. N. M., Prasad, P. D., & Thuruthimattam, B. J. (2001). Stress and failure analysis of 3D orthogonal interlock woven composites. Journal of Reinforced Plastics and Composites, 20(17), 1485–1523. Retrieved from http://jrp.sagepub.com/content/20/17/1485.abstract10.1177/073168401772679110
  • Newton, A., & Hu, J. (1992). The geometry of cloth structure. In Proc Inaugural Conference of the Chinese Students and Scholars Textile Association in UK. Manchester, UK.
  • Paipetis, S. A. (1982). Mechanics of flexible fibre assemblies. Fibre Science and Technology, 16(4), 316. doi:10.1016/0015-0568(82)90053-7
  • Pankow, M., Waas, A. M., Yen, C., & Ghiorse, S. (2009). A new lamination theory for layered textile composites that account for manufacturing induced effects. Composites Part A: Applied Science and Manufacturing; Special Issue: CompTest 2008, 40(12), 1991–2003. doi:10.1016/j.compositesa.2009.08.021
  • Peirce, F. T. (1937). 5 – The geometry of cloth structure. Journal of the Textile Institute Transactions, 28(3), T45–T96. doi:10.1080/19447023708658809
  • Pinnell, M. F., & Hill, S. I. (2008). Assessment of techniques used to measure strain during high rate tensile testing of polymeric materials. SAE International. doi:10.4271/2008-01-1338
  • Schwartz, P. (2008). Structure and mechanics of textile fibre assemblies. Sawston: Woodhead publishing.
  • Seyam, A. M. (2002). Structural design of woven fabric: Theory and practice. Manchester: Textile Institute.
  • Seyam, A., & El-Shiekh, A. (1993). Mechanics of woven fabrics: Part III: Critical review of weavability limit studies. Textile Research Journal, 63(7), 371–378. Retrieved from http://trj.sagepub.com/content/63/7/371.abstract10.1177/004051759306300701
  • Seyam, A. M., & Ince, M. E. (2013). Generalized geometric modeling of three-dimensional orthogonal woven preforms from spun yarns. The Journal of the Textile Institute, 104(9), 914–928. doi:10.1080/00405000.2013.765088
  • Stig, F. (2009). An introduction to the mechanics of 3D-woven fibre reinforced composites. Stockholm: KTH School of Engineering Sciences.
  • Sun, F., Seyam, A. M., & Gupta, B. S. (1997). A generalized model for predicting load-extension properties of woven fabrics. Textile Research Journal, 67(12), 866–874. Retrieved from http://trj.sagepub.com/content/67/12/866.abstract10.1177/004051759706701202
  • Tan, P., & Tong, L., & Steven, G. P. (1997). A 3D modeling technique for predicting the linear elastic properties open-packing woven fabric unit cell. 9th International Conference on Composite Structure. Paisley, Scotland.
  • Tan, P., Tong, L., & Steven, G. P. (1998). Modeling Approaches for 3D Orthogonal Woven Composites. Journal of Reinforced Plastics and Composites, 17(6), 545–577. Retrieved from http://jrp.sagepub.com/content/17/6/545.abstract10.1177/073168449801700605
  • Wambua, P. M., & Anandjiwala, R. (2011). A review of preforms for the composites industry. Journal of Industrial Textiles, 40(4), 310–333. Retrieved from http://jit.sagepub.com/content/40/4/310.abstract10.1177/1528083709092014
  • Wu, G. M., & Shyng, Y. T. (2005). Effects of basic chemical surface treatment on PBO and PBO fiber reinforced epoxy composites. Journal of Polymer Research, 12(2), 93–102. doi:10.1007/s10965-004-2063-8
  • Wu, Z. J., Brown, D., & Davies, J. M. (2002). An analytical modelling technique for predicting the stiffness of 3-D orthotropic laminated fabric composites. Composite Structures, 56(4), 407–412. doi:10.1016/S0263-8223(02)00024-7
  • Xie, H. (2016). The role of fiber type in performance of their composites from 3D orthogonal woven preforms ( MSc). Raleigh, NC: ETD North Carolina State University.
  • Yushanov, S. P., Bogdanovich, A. E., & Mohamed, M. H. (1999). Manufacturing and property analysis of a novel class of 3-D woven composites. Journal of Thermoplastic Composite Materials, 12(1), 70–82. Retrieved from http://jtc.sagepub.com/content/12/1/70.abstract10.1177/089270579901200107
  • Zuorong, C., Shouwen, Y., Xiqiao, F., Lu, M., & Ye, L. (2002). Evaluation of thermo-elastic properties of three-dimensional orthogonal woven composites. Composites Part B: Engineering, 33(3), 241–251. doi:10.1016/S1359-8368(02)00007-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.