78
Views
1
CrossRef citations to date
0
Altmetric
Articles

Analysis of the effect of traffic exposure on the recovery properties of cut pile carpet using analytical and viscoelastic modeling

&
Pages 1433-1438 | Received 06 Sep 2017, Accepted 28 Mar 2019, Published online: 24 May 2019

References

  • Asayesh, A., & Jeddi, A. A. A. (2010). Modeling the creep behavior of plain woven fabrics constructed from textured polyester yarn. Textile Research Journal, 80(7), 642–650. doi: 10.1177/0040517509343816
  • Asayesh, A., Jeddi, A. A. A., & Ghadimi, P. (2009). Modeling the fatigue behavior of plain woven fabrics constructed from textured polyester yarn. Textile Research Journal, 79(13), 1213–1222. doi: 10.1177/0040517508099393
  • Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed., pp. 33–55). New York, NY: Wiley.
  • Grover, G., Zhu, S., & Twilley, I. C. (1993). Dynamic mechanical properties of carpet yarns and carpet performance. Textile Research Journal, 63(5), 257–266. doi: 10.1177/004051759306300502
  • Gupta, S. K., Majumdar, A. B., & Goswami, K. K. (2017). Compressional behavior of Persian hand knotted wool carpets using response surface methodology. Indian Journal of Fibre and Textile Research, 42, 399–406.
  • Jafari, S., & Ghane, M. (2016). An analytical approach for the recovery behavior of cut pile carpet after static loading by mechanical models. Fibers and Polymers, 17(4), 651–655. doi: 10.1007/s12221-016-6191-7
  • Jafari, S., & Ghane, M. (2017). Analysis of the effect of UV radiation on the recovery properties of pile carpet after static loading through analytical and viscoelastic modeling. Journal of the Textile Institute, 108(11), 1905–1909. doi: 10.1080/00405000.2017.1299840
  • Ju, B. F., & Liu, K. (2002). Characterizing viscoelastic properties of thin elastomeric membrane. Mechanics of Materials, 34(8), 485–491. doi: 10.1016/S0167-6636(02)00176-X
  • Khavari, S., & Ghane, M. (2017). An analytical approach for the compression and recovery behavior of cut pile carpets under constant rate of compression by mechanical models. Fibers and Polymers, 18(1), 190–195. doi: 10.1007/s12221-017-6691-0
  • Kumar, B., Das, A., & Alagirusamy, R. (2012). An approach to determine pressure profile generated by compression bandage using quasi-linear viscoelastic model. Journal of Biomechanical Engineering, 134(9), 094501. doi: 10.1115/1.4007176
  • Kumar, S., & Gupta, V. B. (1978). Nonlinear viscoelastic model for textile fibers. Textile Research Journal, 48(7), 429–431. doi: 10.1177/004051757804800712
  • Liu, H., Tao, X. M., Choi, K. F., & Xu, B. G. (2010). Analysis of the relaxation modulus of spun yarns. Textile Research Journal, 80(5), 403–410. doi: 10.1177/0040517509342315
  • Manich, A. M., Marino, P. N., de Castellar, M. D., Saldivia, M., & Sauri, R. M. (2000). Viscoelastic modeling of natural and synthetic textile yarns. Journal of Applied Polymer Science, 76(14), 2062–2067. doi: 10.1002/(SICI)1097-4628(20000628)76:14<2062::AID-APP9>3.3.CO;2-K
  • Manich, A. M., Ussman, M. H., & Barella, A. (1999). Viscoelastic behavior of polypropylene fibers. Textile Research Journal, 69(5), 325–330. doi: 10.1177/004051759906900503
  • Onder, E., & Berkalp, O. B. (2001). Effects of different structure parameters on carpet physical properties. Textile Research Journal, 71, 549–555. doi: 10.1177/004051750107100613
  • Schaff, A. J., & Ogale, A. A. (1991). Tensile viscoelastic properties of spunbonded nonwoven polypropylene backing. Textile Research Journal, 61(7), 386–392. doi: 10.1177/004051759106100704
  • Urbelis, V., Petrauskas, A., & Vitkauskas, A. (2005). Creep and creep recovery behaviour of textile fabrics and their fused systems. Material Science, 11, 162–168.
  • Vangheluwe, L. (1992). Influence of strain rate and yarn number on tensile test results. Textile Research Journal, 62(10), 586–589. doi: 10.1177/004051759206201005
  • Vangheluwe, L., & Kiekens, P. (1996). Modelling relaxation behaviour of yarns. I. Extended, nonlinear Maxwell model. Journal of the Textile Institute, 87(2), 296–304. doi: 10.1080/00405009608659082
  • Vangheluwe, L., & Kiekens, P. (1997). Resilience properties of polypropylene carpets. Textile Research Journal, 67(9), 671–676. doi: 10.1177/004051759706700906
  • Vuruşkan, D., Sarıoğlu, E., Çelik, H. I., & Kaynak, H. K. (2017). Compression properties of woven carpet performance under dynamic loading. Periodicals of Engineering and Natural Sciences, 5, 181–186.
  • Wilding, M. A., Lomas, B., & Woodhouse, A. K. (1990). Changes due to wear in tufted pile carpets. Textile Research Journal, 60(11), 627–640. doi: 10.1177/004051759006001102
  • Wu, J., Pan, N., & Williams, K. R. (2007). Mechanical, biomechanical and psychophysical study of carpet performance. Textile Research Journal, 77(3), 172–178. doi: 10.1177/0040517507079411
  • Zurek, W., Chrznowski, M., Sybilska, W., & Jałmużna, I. (2010). The application of Zurek’s rheological model for description of mechanical behaviour of textiles subjected to different state of loads. Journal of Achievements in Materials and Manufacturing Engineering, 43/2, 702–710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.