233
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of pre-crack length on Mode I fracture toughness of 3-D angle-interlock woven composites from finite element analyses

, ORCID Icon &
Pages 1445-1458 | Received 24 May 2018, Accepted 28 Mar 2019, Published online: 11 May 2019

References

  • Benmedakhene, S., Kenane, M., & Benzeggagh, M. L. (1999). Initiation and growth of delamination in glass/epoxy composites subjected to static and dynamic loading by acoustic emission monitoring. Composites Science and Technology, 59(2), 201–208. doi: 10.1016/S0266-3538(98)00063-3
  • Chai, H. (1984). The characterization of Mode I delamination failure in non-woven, multidirectional laminates. Composites, 15(4), 277–290. doi: 10.1016/0010-4361(84)90708-0
  • Chen, J. H., Schulz, E., Bohse, J., & Hinrichsen, G. (1999). Effect of fibre content on the interlaminar fracture toughness of unidirectional glass-fibre/polyamide composite. Composites Part a-Applied Science and Manufacturing, 30(6), 747–755. doi: 10.1016/S1359-835X(98)00188-2
  • Donadon, M. V., Falzon, B. G., Iannucci, L., & Hodgkinson, J. M. (2007). Intralaminar toughness characterisation of unbalanced hybrid plain weave laminates. Composites Part A: Applied Science and Manufacturing, 38(6), 1597–1611. doi: 10.1016/j.compositesa.2006.12.003
  • Hooputra, H., Gese, H., Dell, H., & Werner, H. (2004). A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness, 9(5), 449–463. doi: 10.1533/ijcr.2004.0289
  • Huddhar, A., Desai, A., Sharanaprabhu, C. M., Kudari, S. K., & Gouda, P. S. S. (2016). Studies on effect of pre-crack length variation on Inter-laminar fracture toughness of a Glass Epoxy laminated composite. IOP Conference Series: Materials Science and Engineering, 149, 012161. doi: 10.1088/1757-899X/149/1/012161
  • Iwahori, Y., Nakane, K., & Watanabe, N. (2009). DCB test simulation of stitched CFRP laminates using interlaminar tension test results. Composites Science and Technology, 69(14), 2315–2322. doi: 10.1016/j.compscitech.2008.12.018
  • Jia, R., Kim, Y. K., & Rice, J. (2010). Comparing the fracture toughness of 3-D braided preform composites with z-fiber-reinforced laminar composites. Textile Research Journal, 81(4), 335–343.
  • Kotaki, M., & Hamada, H. (1997). Effect of interfacial properties and weave structure on mode I interlaminar fracture behaviour of glass satin woven fabric composites. Composite Part A, 28(3), 257–266. doi: 10.1016/S1359-835X(96)00121-2
  • Laffan, M. J., Pinho, S. T., Robinson, P., & Iannucci, L. (2010). Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part I: Data reduction. Composites Science and Technology, 70(4), 606–613. doi: 10.1016/j.compscitech.2009.12.016
  • Liu, S., Shi, B., Siddique, A., Du, Y., Sun, B., & Gu, B. (2018). Numerical analyses on thermal stress distribution induced from impact compression in 3D carbon fiber/epoxy braided composite materials. Journal of Thermal Stresses, 41(7), 903–919. doi: 10.1080/01495739.2018.1437000
  • Mahdi, S., Gama, B. A., Yarlagadda, S., & Gillespie, J. W. (2003). Effect of the manufacturing process on the interfacial properties and structural performance of multi-functional composite structures. Composites Part A – Applied Science and Manufacturing, 34(7), 635–647. doi: 10.1016/S1359-835X(03)00091-5
  • Pradeep, K. R., Rao, B. N., Sivakumar, S. M., & Balasubramanium, K. (2010). Interface fracture assessment on sandwich DCB specimens. Journal of Reinforced Plastics and Composites, 29(13), 1963–1977. doi: 10.1177/0731684409343323
  • Quinn, J. P., McIlhagger, A. T., & McIlhagger, R. (2008). Examination of the failure of 3D woven composites. Composites Part A: Applied Science and Manufacturing, 39(2), 273–283. doi: 10.1016/j.compositesa.2007.10.012
  • Reis, P. N. B., Ferreira, J. A. M., Antunes, F. V., & Costa, J. D. M. (2015). Initial crack length on the interlaminar fracture of woven carbon/epoxy laminates. Fibers and Polymers, 16(4), 894–901. doi: 10.1007/s12221-015-0894-z
  • Ren, C., Liu, T., Siddique, A., Sun, B., & Gu, B. (2018). High-speed visualizing and mesoscale modeling for deformation and damage of 3D angle-interlock woven composites subjected to transverse impacts. International Journal of Mechanical Sciences, 140, 119–132. doi: 10.1016/j.ijmecsci.2018.02.044
  • Sebaey, T. A., Blanco, N., Costa, J., & Lopes, C. S. (2012). Characterization of crack propagation in mode I delamination of multidirectional CFRP laminates. Composites Science and Technology, 72(11), 1251–1256. doi: 10.1016/j.compscitech.2012.04.011
  • Siddique, A., Sun, B., & Gu, B. (2018). Structural influences of two-dimensional and three-dimensional carbon/epoxy composites on mode I fracture toughness behaviors with rate effects on damage evolution. Journal of Industrial Textiles. Advance online publication. doi: 10.1177/1528083718819871
  • Simulia, D. (2014). ABAQUS 6.14 theory manual. Providence, RI: DS SIMULIA Corp.
  • Tanzawa, Y., Watanabe, N., & Ishikawa, T. (2001). FEM simulation of a modified DCB test for 3-D orthogonal interlocked fabric composites. Composites Science and Technology, 61(8), 1097–1107. doi: 10.1016/S0266-3538(01)00003-3
  • Wang, M., Cao, M., Wang, H., Siddique, A., Gu, B., & Sun, B. (2017). Drop-weight impact behaviors of 3-D angle interlock woven composites after thermal oxidative aging. Composite Structures, 166, 239–255. doi: 10.1016/j.compstruct.2017.01.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.