322
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Facile preparation of multi-scale nanoarchitectures on cotton fabric with low surface energy for high performance self-cleaning

, , , , , , & show all
Pages 1603-1613 | Received 03 Sep 2019, Accepted 16 Dec 2019, Published online: 31 Jan 2020

References

  • Afzal, S., Daoud, W. A., & Langford, S. J. (2014). Superhydrophobic and photocatalytic self-cleaning cotton. Journal of Materials Chemistry A, 2(42), 18005–18011. doi:10.1039/C4TA02
  • Ahmad, M. M., & Eshaghi, A. (2018). Fabrication of antireflective superhydrophobic thin film based on the TMMS with self-cleaning and anti-icing properties. Progress in Organic Coatings, 122, 199–206. doi:10.1016/j.porgcoat.2018.06.001
  • Anish, T., Wonjae, C., Ma, M., Mabry, J. M., Mazzella, S. A., Rutledge, G. C., … Cohen, R. E. (2007). Designing superoleophobic surfaces. Science, 318(5856), 1618–1622. doi:10.1126/science.1148326
  • Boyd, D. A., Frantz, J. A., Bayya, S. S., Busse, L. E., Kim, W., Aggarwal, I., … Sanghera, J. S. (2016). Modification of nanostructured fused silica for use as superhydrophobic, IR-transmissive, anti-reflective surfaces. Optical Materials, 54, 195–199. doi:10.1016/j.optmat.2016.02.035
  • Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551. doi:10.1039/tf9444000546
  • Chanzy, H., Nawrot, S., Peguy, A., Smith, P., & Chevalier, J. (1982). Phase behavior of the quasiternary system N-methylmorpholine-N-oxide, water, and cellulose. Journal of Polymer Science: Polymer Physics Edition, 20(10), 1909–1924. doi:10.1002/pol.1982.180201014
  • Chauhan, P., Kumar, A., & Bhushan, B. (2019). Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. Journal of Colloid and Interface Science, 535, 66–74. doi:10.1016/j.jcis.2018.09.087
  • Chu, Z., & Seeger, S. (2014). Superamphiphobic surfaces. Chemical Society Reviews, 43(8), 2784–2798. doi:10.1039/C3CS60415B
  • Cirisano, F., Benedetti, A., Liggieri, L., Ravera, F., Santini, E., & Ferrari, M. (2016). Amphiphobic coatings for antifouling in marine environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 505, 158–164. doi:10.1016/j.colsurfa.2016.03.045
  • Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., & Barthlott, W. (2011). Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2, 152–161. doi:10.3762/bjnano.2.19
  • Farouk, A., Sharaf, S., & Abd El-Hady, M. M. (2013). Preparation of multifunctional cationized cotton fabric based on TiO2 nanomaterials. International Journal of Biological Macromolecules, 61, 230–237. doi:10.1016/j.ijbiomac.2013.06.022
  • Fink, H. P., Weigel, P., Purz, H. J., & Ganster, J. (2001). Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science, 26(9), 1473–1524. doi:10.1016/S0079-6700(01)00025-9
  • Fowkes, F. M. (1963). Additivity of intermolecular forces at interfaces. I. determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids. The Journal of Physical Chemistry, 67(12), 2538–2541. doi:10.1021/j100806a008
  • Hanaei, H., Assadi, M. K., & Saidur, R. (2016). Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review. Renewable and Sustainable Energy Reviews, 59, 620–635. doi:10.1016/j.rser.2016.01.017
  • Hansen, N. M. L., Jankova, K., & Hvilsted, S. (2007). Fluoropolymer materials and architectures prepared by controlled radical polymerizations. European Polymer Journal, 43(2), 255–293. doi:10.1016/j.eurpolymj.2006.11.016
  • Jing, G., Liu, J., Xu, R., Guo, H., & Ning, P. (2017). Micro-nanostructure-based super-hydrophobic surface on cotton fabric. Textile Research Journal, 8, 2602–2610. doi:10.1177/0040517517732080
  • Karimi, L., Zohoori, S., & Amini, A. (2014). Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking. New Carbon Materials, 29(5), 380–385. doi:10.1016/S1872-5805(14)60144-X
  • Kim, K., & Seomoon, K. (2017). A study on the corona-treated PVdF films with alkyl methacrylate monomer as a coupling agent. Journal of Industrial and Engineering Chemistry, 47, 150–153. doi:10.1016/j.jiec.2016.11.026
  • Lei, S., Shi, Z., Ou, J., Wang, F., Xue, M., Li, W., … Zhang, J. (2017). Durable superhydrophobic cotton fabric for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 249–254. doi:10.1016/j.colsurfa.2017.08.012
  • Leslie, D. C., Waterhouse, A., Berthet, J. B., Valentin, T. M., Watters, A. L., Jain, A., … Ingber, D. E. (2014). A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature Biotechnology, 32(11), 1134–1140. doi:10.1038/nbt.3020
  • Lettieri, M., Colangiuli, D., Masieri, M., & Calia, A. (2018). Field performances of nanosized TiO2 coated limestone for a self-cleaning building surface in an urban environment. Building and Environment, 147, 506–516. doi:10.1016/j.buildenv.2018.10.037
  • Li, D., & Guo, Z. (2017). Versatile superamphiphobic cotton fabrics fabricated by coating with SiO2/FOTS. Applied Surface Science, 426, 271–278. doi:10.1016/j.apsusc.2017.07.150
  • Li, X., Li, Y., Guan, T., Xu, F., & Sun, J. (2018). Durable, Highly Electrically Conductive Cotton Fabrics with Healable Superamphiphobicity. ACS Applied Materials & Interfaces, 10(14), 12042–12050. doi:10.1021/acsami.8b01279
  • Liu, B., Wang, Z., & He, J. (2012). SiO2/TiO2 multilayer films grown on cotton fibers surface at low temperature by a novel two-step process. Materials Letters, 67(1), 8–10. doi:10.1016/j.matlet.2011.09.017
  • Lu, Y., Sathasivam, S., Song, J., Xu, W., Carmalt, C. J., & Parkin, I. P. (2014). Water droplets bouncing on superhydrophobic soft porous materials. Journal of Materials Chemistry, 2(31), 12177–12184. doi:10.1039/C4TA02391A
  • Mehta, S. (2018). Optimization of fluorochemical finish concentration for liquid repellency treatment of 100% cotton fabric and resulting physical properties. AATCC Journal of Research, 5(5), 15–22. doi:10.14504/ajr.5.5.3
  • Mejía, M. I., Marín, J. M., Restrepo, G., Pulgarín, C., Mielczarski, E., Mielczarski, J., … Kiwi, J. (2009). Self-cleaning modified TiO2–cotton pretreated by UVC-light (185nm) and RF-plasma in vacuum and also under atmospheric pressure. Applied Catalysis B: Environmental, 91(1–2), 481–488. doi:10.1016/j.apcatb.2009.06.017
  • Moiz, A., Vijayan, A., Padhye, R., & Wang, X. (2016). Chemical and water protective surface on cotton fabric by pad-knife-pad coating of WPU-PDMS-TMS. Cellulose, 23(5), 3377–3388. doi:10.1007/s10570-016-1028-5
  • Montazer, M., & Seifollahzadeh, S. (2011). Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochemistry & Photobiology, 87(4), 877–883. doi:10.2991/aeece-15.2015.156
  • Nazari, A., Montazer, M., & Dehghani-Zahedani, M. (2013). Nano TiO2 as a new tool for mothproofing of wool: Protection of wool against Anthrenus verbasci. Industrial & Engineering Chemistry Research, 52(3), 1365–1371. doi:10.1021/ie302187c
  • Nguyen-Tri, P., Altiparmak, F., Nguyen, N., Tuduri, L., Ouellet-Plamondon, C. M., & Prud'homme, R. E. (2019). Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. ACS Omega, 4(4), 7829–7837. doi:10.1021/acsomega.9b00688
  • Pakdel, E., & Daoud, W. A. (2013). Self-cleaning cotton functionalized with TiO2/SiO2: Focus on the role of silica. Journal of Colloid and Interface Science, 401, 1–7. doi:10.1016/j.jcis.2013.03.016
  • Pakdel, E., Daoud, W. A., & Wang, X. (2013). Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite. Applied Surface Science, 275, 397–402. doi:10.1016/j.apsusc.2012.10.141
  • Panwar, K., Jassal, M., & Agrawal, A. K. (2018). TiO2–SiO2 janus particles for photocatalytic self-cleaning of cotton fabric. Cellulose, 25(4), 2711–2710. doi:10.1007/s10570-018-1698-2
  • Pi, P., Hou, K., Wen, X., Xu, S., Cheng, J., Xu, G., & Wang, S. (2016). A facile one-step fabrication of robust superhydrophobic/superoleophilic cotton fabric using a crosslinkable POSS-containing fluorinated copolymer. Progress in Organic Coatings, 101, 522–529. doi:10.1016/j.porgcoat.2016.09.023
  • Santos, J. M. R. C. A., Sampaio, A. R., & Branquinho, J. (2016). Superhydrophobic and oleophobic UV-curable surface engineering of cellulose-based substrates. Journal of Renewable Materials, 4(1), 31–40. doi:10.7569/JRM.2015.634123
  • Sengupta, A., Malik, S. N., & Bahadur, D. (2016). Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface. Applied Surface Science, 363, 346–355. doi:10.1016/j.apsusc.2015.12.0247
  • Varshney, P., Lomga, J., Gupta, P. K., Mohapatra, S. S., & Kumar, A. (2018). Durable and regenerable superhydrophobic coatings for aluminium surfaces with excellent self-cleaning and anti-fogging properties. Tribology International, 119, 38–44. doi:10.1016/j.triboint.2017.10.033
  • Wei, Y., Wu, K., Liu, N., Zhang, Y., & Wang, H. (2018). Cellulose acetate fibers with improved mechanical strength prepared with aqueous NMMO as solvent. Cellulose, 25(11), 6395–6404. doi:10.1007/s10570-018-2032-8
  • Xin, J., Liu, X., Liu, Q., & Yuan, L. (2015). Manufacture and performance of ethylamine hydroxyethyl chitosan/cellulose fiber in N -methylmorpholine- N -oxide system. Reactive and Functional Polymers, 91-92, 62–70. doi:10.1016/j.reactfunctpolym.2015.04.008
  • Xu, B., Ding, Y., Qu, S., & Cai, Z. (2015). Superamphiphobic cotton fabrics with enhanced stability. Applied Surface Science, 356, 951–957. doi:10.1016/j.apsusc.2015.08.180
  • Zeng, C., Wang, H., Zhou, H., Wang, W., & Lin, T. (2015). Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Advances, 5(75), 61044–61050. doi:10.1039/C5RA08040A
  • Zhan, H., Peng, N., Lei, X., Huang, Y., Li, D., Tao, R., & Chang, C. (2018). UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydrate Polymers, 201, 464–470. doi:10.1016/j.carbpol.2018.08.093

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.