208
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effects of nozzle structural parameters on yarn hairiness in jetring spinning system

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1567-1577 | Received 08 Aug 2019, Accepted 08 Jan 2020, Published online: 31 Jan 2020

References

  • Box, G. E. P., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B (Methodological)), 13(1), 1–38. doi:10.1111/j.2517-6161.1951.tb00067.x
  • Cheng, K. P. S., & Li, C. H. L. (2002). JetRing spinning and its influence on yarn hairiness. Textile Research Journal, 72(12), 1079–1087. doi:10.1177/004051750207201207
  • Guo, H., An, X., & Yu, C. (2007). Numerical study on the principle of yarn formation in Murata air-jet spinning. Journal of Textile Engineering, 53(5), 173–178. doi:10.4188/jte.53.173
  • Guo, H. F., Chen, Z. Y., & Yu, C. W. (2008). Numerical study of an air-jet spinning nozzle with a slotting-tube. Journal of Physics: Conference Series, 96(1), 1–5. doi:10.1088/1742-6596/96/1/012110
  • Guo, H. F., Chen, Z. Y., & Yu, C. W. (2009). Simulation of the effect of geometric parameters on tangentially injected swirling pipe airflow. Computers & Fluids, 38(10), 1917–1924. doi:10.1016/j.compfluid.2009.05.001
  • Guo, H. F., Xu, B. G., Yu, C. W., & Li, S. Y. (2011). Simulating the motion of a flexible fiber in 3D tangentially injected swirling airflow in a straight pipe - Effects of some parameters. International Journal of Heat and Mass Transfer, 54(21–22), 4570–4579. doi:10.1016/j.ijheatmasstransfer.2011.06.021
  • Guo, H. F., Yu, C. W., Xu, B. G., & Li, S. Y. (2011). Effect of the geometric parameters on a flexible fiber motion in a tangentially injected divergent swirling tube flow. International Journal of Engineering Science, 49(10), 1033–1046. doi:10.1016/j.ijengsci.2011.06.002
  • Han, C., Xue, W., Cheng, L., & Zou, Z. (2016). Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties. Textile Research Journal, 86(19), 2022–2031. doi:10.1177/0040517515619354
  • Hoseinpour, A. R., Shaikhzadeh Najar, S., & Bakhshi Jooybari, M. (2012). The effect of air-jet nozzle structural parameters on new cotton rotor-jet spun yarn properties. Journal of the Textile Institute, 103(6), 595–603. doi:10.1080/00405000.2011.592663
  • Jeon, B. S. (2000). Effect of an air-suction nozzle on yarn hairiness and quality. Textile Research Journal, 70(11), 1019–1024. 10.1177/004051750007001113.
  • Jumare, A. I., Abou-El-Hossein, K., Abdulkadir, L. N., & Liman, M. M. (2019). Predictive modeling and multiobjective optimization of diamond turning process of single-crystal silicon using RSM and desirability function approach. The International Journal of Advanced Manufacturing Technology, 103(9–12), 4205–4220. doi:10.1007/s00170-019-03816-w
  • Juraeva, M., Song, D. J., & Ryu, K. J. (2016). Influences of the air inlet and yarn-loading slit on the performance of an air-twist nozzle. Textile Research Journal, 86(3), 311–317. doi:10.1177/0040517514548810
  • Klein, W. (1993). New spinning systems, short-staple spinning series. The Textile Institute, 5, 40–41.
  • Lawrence, C. A. (2003). Fundamentals of spun yarn technology. Florida: CRC Press.
  • Li, M. (2016). Effect of the distance between jet orifice and nozzle Alex on properties of vortex spun yarn. The Journal of the Textile Institute, 107(1), 81–90. doi:10.1080/00405000.2015.1011930
  • Liu, X., & Su, X. (2017). Research on flow field in a modified ring spinning system with the air nozzle. The Journal of the Textile Institute, 108(4), 489–499. doi:10.1080/00405000.2016.1171480
  • Lord, P. R. (2003). Handbook of yarn production. Manchester: The Textile Institute.
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: Process and product optimization using designed experiments. California: John Wiley & Sons.
  • Oxenham, W., & Basu, A. (1993). Effect of jet design on the properties of air-jet spun yarns. Textile Research Journal, 63(11), 674–678. doi:10.1177/004051759306301109
  • Patnaik, A., Rengasamy, R. S., Ishtiaque, S. M., & Ghosh, A. (2007). Hairiness of spun yarns and their reduction using air-nozzle in winding. Journal of the Textile Institute, 98(3), 243–249. doi:10.1080/00405000701502743
  • Patnaik, A., Rengasamy, R. S., Kohari, V. K., & Ghosh, A. (2005). Hairiness reduction of yarns by nozzles at ring spinning airflow stimulation approach. Journal of Textile and Apparel, Technology and Management, 4, 1–11.
  • Patnaik, A., Rengasamy, R. S., Kothari, V. K., & Bhatia, S. K. (2008). Some studies on hairiness reduction of polyester ring spun yarns by using air-nozzles during winding. Journal of the Textile Institute, 99(1), 17–27. doi:10.1080/00405000701502776
  • Patnaik, A., Rengasamy, R. S., Kothari, V. K., & Punekar, H. (2006). Airflow simulation in nozzle for hairiness reduction of ring spun yarns. Part II: Influence of nozzle parameters. Journal of the Textile Institute, 97(1), 97–101. doi:10.1533/joti.2005.0217
  • Rengasamy, R. S., Kothari, V. K., Patnaik, A., & Punekar, H. (2006). Airflow simulation in nozzle for hairiness reduction of ring spun yarns. Part I: Influence of airflow direction, nozzle distance, and air pressure. Journal of the Textile Institute, 97(1), 89–96. doi:10.1533/joti.2005.0218
  • Rengasamy, R. S., Kothari, V. K., Patnaik, A., Ghosh, A., & Punekar, H. (2005). Reducing yarn hairiness in winding by means of jets: Optimisation of jet parameters, yarn linear density and winding speed. Autex Research Journal, 5(3), 127–132.
  • Rengasamy, R. S., Patanaik, A., & Anandjiwala, R. D. (2008). Simulation of airflow in nozzle-ring spinning using computational fluid dynamics: Study on reduction in yarn hairiness and the role of air drag forces and angle of impact of air current. Textile Research Journal, 78(5), 412–420. doi:10.1177/0040517507089754
  • Rengasamy, R. S., Patnaik, A., & Punekar, H. (2006). Studies on reduction of yarn hairiness by nozzles in ring spinning and winding by airflow simulation. Fibers and Polymers, 7(3), 317–322. doi:10.1007/BF02875690
  • Sawhney, A. P. S., & Kimmel, L. B. (1997). Air and ring combination in tandem spinning. Textile Research Journal, 67(3), 217–223. doi:10.1177/004051759706700310
  • Shang, S., Sun, N., Yu, C., Chang, T., & Li, M. (2015). Optimization of nozzle structure parameters of vortex spinning. Textile Research Journal, 85(9), 998–1006. doi:10.1177/0040517514557308
  • Su, X., Liu, X., & Liu, X. (2018). Numerical simulation of flow field in the pneumatic compact spinning systems using Finite Element Method. International Journal of Clothing Science and Technology, 30(3), 363–379. doi:10.1108/IJCST-11-2017-0180
  • Sun, L., & Pei, Z. (2016). Effects of structural parameters on the tangentially injected swirling flow in concentric tubes with different lengths as a model of the vortex spinning nozzle. Textile Research Journal, 86(12), 1241–1258. doi:10.1177/0040517515609255
  • Wang, J., & Jin, J. (2009). Study on a reducing-hairiness nozzle attached on the winding machine. Journal of the Textile Institute, 100(7), 649–653. doi:10.1080/00405000802273970
  • Wang, X., Miao, M., & How, Y. (1997). Studies of JetRing spinning Part I: Reducing yarn hairiness with the JetRing. Textile Research Journal, 67(4), 253–258. doi:10.1177/004051759706700403
  • Yilmaz, D. (2011). Development and numerical modelling of plied yarn production process based on the usage of high velocity air, Ph.D. thesis,. Suleyman Demirel University, Isparta.
  • Yilmaz, D., & Usal, M. R. (2011). A comparison of compact-jet, compact, and conventional ring-spun yarns. Textile Research Journal, 81(5), 459–470. doi:10.1177/0040517510385174
  • Yilmaz, D., & Usal, M. R. (2012a). A study on siro-jet spinning system. Fibers and Polymers, 13(10), 1359–1367. doi:10.1007/s12221-012-1359-2
  • Yilmaz, D., & Usal, M. R. (2012b). Effect of nozzle structural parameters on hairiness of compact-jet yarns. Journal of Engineered Fibers and Fabrics, 7(2), 155892501200700–155892501200765. doi:10.1177/155892501200700209
  • Yilmaz, D., & Usal, M. R. (2013a). Improvement in yarn hairiness by the siro-jet spinning method. Textile Research Journal, 83(10), 1081–1100. doi:10.1177/0040517512471748
  • Yilmaz, D., & Usal, M. R. (2013b). Investigation of yarn properties of modified yarn spinning systems with air nozzle attachment. Fibres and Textiles in Eastern Europe, 98(2), 43–50.
  • Zeng, Y. C., & Yu, C. W. (2003). Numerical simulation of air flow in the nozzle of an air-jet spinning machine. Textile Research Journal, 73(4), 350–356. doi:10.1177/004051750307300413
  • Zeng, Y. C., & Yu, C. W. (2004a). Numerical and experimental study on reducing yarn hairiness with the JetRing and JetWind. Textile Research Journal, 74(3), 222–226. doi:10.1177/004051750407400306
  • Zeng, Y. C., & Yu, C. W. (2004b). Numerical simulation of fiber motion in the nozzle of an air-jet spinning machine. Textile Research Journal, 74(2), 117–122. doi:10.1177/004051750407400206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.