632
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods

, , ORCID Icon &
Pages 1641-1651 | Received 05 Feb 2019, Accepted 04 Aug 2019, Published online: 18 Feb 2020

References

  • Albrecht, W., Fuchs, H., & Kittelmann, W. (2003). Nonwoven fabrics. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, vol. 561.
  • Aydilek, A. H., Seyfullah, H. O., & Edil, T. B. (2002). Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. Journal of Computing in Civil Engineering, 16(4), 280–290. doi:10.1061/(ASCE)0887-3801(2002)16:4(280)
  • Berkalp, O. (2006). Air permeability & porosity in spun-laced fabrics. Fibres and Textiles in Eastern Europe, 14(3(57)), 81–85.
  • Berkalp, O. B., Pourdeyhimi, B., & Seyam, A. (2003). Texture evolution in hydroentangled nonwovens. International Nonwovens Journal, 12, 28–35. doi:10.1177/1558925003os-1200110
  • Bo, Z. (2009). Using artificial neural network model on studying fiber diameter of spunbonding nonwovens: comparison with mathematical empirical statistical method model. Second International Conference on Intelligent Computation Technology and Automation, 1, 423–426.
  • Cay, A., Vassiliadis, S., Maria, R., et al. (2007). Prediction of the air permeability of woven fabrics using neural networks. International Journal of Clothing Science and Technology, 19(1), 18–35. doi:10.1108/09556220710717026
  • Çelik, H. İ. (2017). Determination of air permeability property of air-laid nonwoven fabrics using regression analyses. Periodicals of Engineering and Natural Sciences (PEN), 5(2), 210–216. doi:10.21533/pen.v5i2.125
  • Chen, T., Zhang, C., Li, L., & Chen, X. (2008). Simulating the drawing of spunbonding nonwoven process using an artificial neural network technique. Journal of the Textile Institute, 99(5), 479–488. doi:10.1080/00405000701608631
  • Chen, T., Zhao, S., & Wu, L. (2010). Simulating the filtration properties of nonwoven fabrics: comparison of artificial neural network, statistical and grey models. Applied Mechanics and Materials, 20–23, 1021–1027. doi:10.4028/www.scientific.net/AMM.20-23.1021
  • Chhabra, R. (2003). Nonwoven uniformity - measurements using image analysis. International Nonwovens Journal, 12(1), 43–50. doi:10.1177/1558925003os-1200112
  • Debnath, S. (2011). Modelling of needle-punched nonwoven fabric properties using artificial neural network. In: K. Suzuki (Ed.), Artificial neural networks-industrial and control engineering applications (pp. 65–68). Croatia: InTech.
  • Dimassi, M., Koehl, L., Zeng, X., & Peruwelz, A. (2008). Pore network modelling using image processing techniques: Application to the nonwoven material. International Journal of Clothing Science and Technology, 20(3), 137–149. doi:10.1108/09556220810865193
  • Gadelmawla, E. S. (2004). A vision system for surface roughness characterization using the gray level co-occurrence matrix. NDT & E International, 37(7), 577–588. doi:10.1016/j.ndteint.2004.03.004
  • Gong, R. H., & Newton, A. (1992). Image-analysis techniques. Part I: The measurement of pore-size distribution. Journal of the Textile Institute, 83(2), 253–268. doi:10.1080/00405009208631195
  • Hajiani, F., Hosseini, S. M., Ansari, N., & Jeddi, A. A. A. (2010). The influence of water jet pressure settings on the structure and absorbency of spunlace nonwoven. Fibers and Polymers, 11(5), 798–804. doi:10.1007/s12221-010-0798-x
  • Harahck, R. M. (1973). Texture feature for image classification. IEEE Trans. on System, Man and Cybern, 3(6), 610–621.
  • Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804. doi:10.1109/PROC.1979.11328
  • Kalebek, N. A., & Osman, B. (2016). Fiber selection for the production of nonwovens. In: H. Y. Jeon (Ed.), Non-woven fabrics (pp. 1–23). London: IntechOpen.
  • Lien, H. C., & Liu, C. H. (2006). A method of inspecting non-woven basis weight using the exponential law of absorption and image processing. Textile Research Journal, 76(7), 547–558. doi:10.1177/0040517506060141
  • Lin, J. J. (2002). Applying a co-occurrence matrix to automatic inspection of weaving density for woven fabrics. Textile Research Journal, 72(6), 486–490. doi:10.1177/004051750207200604
  • Lu, Z. M., & Xiao, M. Q. (2011). Combination technology of Spunbond & Spunlace. Advanced Materials Research , 331, 241–244. doi:10.4028/www.scientific.net/AMR.331.241
  • Maity, S., Singha, K., & Singha, M. (2013). Three-dimensional micro-image analysis of nonwoven structure. Frontiers in Science, 3(1), 22–26. doi:10.5923/j.fs.20120206.16
  • Matusiak, M. (2015). Application of artificial neural networks to predict the air permeability of woven fabrics. Fibres & Textiles in Eastern Europe, 109, 41–48.
  • Mbwana, N. S., Jin, X., Ting, C., & Yu, C. (2009). Optimum water jets inclination angle for better tensile strength in hydroentanglement process. Fibres & Textiles in Eastern Europe, 75(4), 82–86.
  • Nohut, S., Taşcan, M., & Akgobek, Ö. (2015). Estimation of areal weight, grab tensile strength, and elongation at break of PP spunbond nonwovens using digital image analysis and artificial neural networks. Journal of Engineered Fabrics & Fibers (JEFF), 10(2), 155–162.
  • Ozturk, M. K., Nergis, B., & Candan, C. (2016). A comparative study on air permeability properties of multilayered nonwoven structures. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 10(12), 1510–1513.
  • Pourdehyhimi, B., Dent, R., Jerbi, A., Tanaka, S., & Deshpande, A. (1999). Measuring fiber orientation in nonwovens Part V: Real webs. Textile Research Journal, 69(3), 185–192. doi:10.1177/004051759906900305
  • Pourdeyhimi, B., & Dent, R. (1997). Measuring fiber orientation in nonwovens part IV: Flow field analysis. Textile Research Journal , 67(3), 181–187. doi:10.1177/004051759706700304
  • Pourdeyhimi, B., & Kim, H. S. (2002). Measuring fiber orientation in nonwovens: The Hough transform. Textile Research Journal, 72(9), 803–809. doi:10.1177/004051750207200909
  • Pourdeyhimi, B., Ramanathan, R., & Dent, R. (1996). Measuring fiber orientation in nonwovens: Part I: Simulation. Textile Research Journal, 66(11), 713–722. doi:10.1177/004051759606601107
  • Pourmohammadi, A. (2013). Nonwoven materials and joining techniques. In: I. Jones and G.K. Stylios (Eds.), Joining textiles: Principles and applications (1st ed., pp. 565–581). Philadelphia, PA: Woodhead Publishing.
  • Rawal, A. (2010). Structural analysis of pore size distribution of nonwovens. Journal of the Textile Institute, 101(4), 350–359. doi:10.1080/00405000802442351
  • Tascan, M., & Nohut, S. (2015). Nondestructive prediction of areal weight, grab tensile strength and elongation at break of polypropylene (PP) Spunbond nonwoven fabrics using digital image analysis. Textile and Apparel, 25(1), 24–32.
  • Tunak, M., Antoch, J., & Kula, J. (2014). Estimation of fiber system orientation for nonwoven and nano fibrous layers: Local approach based on image analysis. Textile Research Journal, 84(9), 989–1006. doi:10.1177/0040517513509852
  • Wang, R., Xu, B., & Li, C. (2014). Accurate fiber orientation measurements in nonwovens using a multi-focus image fusion technique. Textile Research Journal, 84(2), 115–124. doi:10.1177/0040517513490056
  • Xu, B. (1996). Measurement of pore characteristics in nonwoven fabrics using image analysis. Clothing and Textiles Research Journal, 14(1), 81–88.
  • Yekrang, J., Sarijeh, B., & Semnani, D. (2015). Prediction of heat transfer and air permeability properties of light weight nonwovens using artificial intelligence. Indian Journal of Fiber & Textile Research, 40, 373–379.
  • Zupin, Ž., Hladnik, A., & Dimitrovski, K. (2012). Prediction of one-layer woven fabrics air permeability using porosity parameters. Textile Research Journal, 82(2), 117–128. doi:10.1177/0040517511424529

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.