1,236
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization

& ORCID Icon
Pages 1794-1810 | Received 07 Oct 2019, Accepted 03 Feb 2020, Published online: 19 Feb 2020

References

  • Arora, R., & Balasubramanian, K. (2014). Hierarchically porous PVDF/nano-SiC foam for distant oil-spill cleanups. RSC Advances, 4(96), 53761–53767. doi:10.1039/C4RA09245G
  • Aznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36–43. doi:10.1016/j.bioelechem.2011.11.008
  • Baek, D. H., Ki, C. S., Um, I. C., & Park, Y. H. (2007). Metal ion adsorbability of electrospun wool keratose/silk fibroin blend nanofiber mats. Fibers and Polymers, 8(3), 271–277. doi:10.1007/BF02877269
  • Balasubramanian, K., Sharma, S., Badwe, S., & Banerjee, B. (2015). Tailored non-woven electrospun mesh of poly-ethyleneoxide-keratin for radioactive metal ion sorption. Journal of Green Science and Technology, 2(1), 10–19. doi:10.1166/jgst.2015.1032
  • Balci, N., Ömeroğullari, Z., Kut, D., & Eren, H. A. (2015). Effects of plasma and ozone treatments on tensile and whiteness properties of 100% silk. Uludağ University Journal of the Faculty of Engineering, 20(2), 43. doi:10.17482/uujfe.33090
  • Bhalara, P. D., Balasubramanian, K., & Banerjee, B. S. (2015). Spider–web textured electrospun composite of graphene for sorption of Hg(II) ions. Materials Focus, 4(2), 154–163. doi:10.1166/mat.2015.1232
  • Bhalara, P. D., Punetha, D., & Balasubramanian, K. (2014). A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. Journal of Environmental Chemical Engineering., 2(3), 1621–1634. doi:10.1016/j.jece.2014.06.007
  • Brenckle, M. A., Tao, H., Kim, S., Paquette, M., Kaplan, D. L., & Omenetto, F. G. (2013). Protein-protein nanoimprinting of silk fibroin films. Advanced Materials, 25(17), 2409–2414. doi:10.1002/adma.201204678
  • Bray, C. M. (1928). Boiling off silk: Methods. American Dyestuff Reporter, 17, 743–747.
  • Cai, L., Liu, Q., & Cherian, M. G. (2010). Metallothionein and intracellular sequestration of metals. In: C. A. McQueen (Ed.), Comprehensive Toxicology (pp.501–517). USA: Elsevier.
  • Cai, Y., Ge, H. Y., & Liu, J. Q. (2012). A study on ultrasonic technology in silk degumming. Advanced Materials Research, 441, 122–126. doi:10.4028/www.scientific.net/AMR.441.122
  • Cao, T.-T., Wang, Y.-J., & Zhang, Y.-Q. (2013). Effect of strongly alkaline electrolyzed water on silk degumming and the physical properties of the fibroin fiber. PLoS One., 8(6), e65654. doi:10.1371/journal.pone.0065654
  • Chen, X., Knight, D. P., Shao, Z., & Vollrath, F. (2001). Regenerated Bombyx silk solutions studied with rheometry and FTIR. Polymer ( Polymer, 42(25), 09969–09974. ). doi:10.1016/S0032-3861(01)00541-9
  • Chopra, S., & Gulrajani, M. L. (1994). Comparative evaluation of the various methods of degumming silk. Indian Journal of Fibre and Textile Research., 19, 76–73.
  • Phillips, D. M., Drummy, L. F., Conrady, D. G., Fox, D. M., Naik, R. R., Stone, M. O..… Mantz, R. A. (2004). Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. Journal of the American Chemical Society, 126(44), 14350–14351. doi:10.1021/ja046079f
  • Darbre, A. (1986). Practical protein chemistry – a handbook. Mishawaka, USA: Wiley.
  • Freddi, G., Arai, T., Colonna, G. M., Boschi, A., & Tsukada, M. (2001). Binding of metal cations to chemically modified wool and antimicrobial properties of the wool-metal complexes. Journal of Applied Polymer Science, 82(14), 3513–3519. doi:10.1002/app.2213
  • Freddi, G., Pessina, G., & Tsukada, M. (1999). Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. International Journal of Biological Macromolecules., 24(2-3), 251–263. n.d.) doi:10.1016/S0141-8130(98)00087-7
  • Giesa, T., Arslan, M., Pugno, N. M., & Buehler, M. J. (2011). Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Letters, 11(11), 5038–5046. doi:10.1021/nl203108t
  • Gonte, R. R., & Balasubramanian, K. (2012). Chemically modified polymer beads for sorption of gold from waste gold solution. Journal of Hazardous Materials., 217–218, 447–451. doi:10.1016/j.jhazmat.2012.03.020
  • Gonte, R., & Balasubramanian, K. (2016). Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: Isotherms and kinetics. Journal of Saudi Chemical Society, 20, S579–S590. doi:10.1016/j.jscs.2013.04.003
  • Gore, P. M., & Kandasubramanian, B. (2018). Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. Journal of Materials Chemistry A, 6(17), 7457–7479. doi:10.1039/C7TA11260B
  • Gore, P. M., Dhanshetty, M., & Balasubramanian, K. (2016). Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Advances, 6(112), 111250–111260. doi:10.1039/C6RA24106A
  • Gore, P. M., Khurana, L., Dixit, R., & Balasubramanian, K. (2017). Keratin-Nylon 6 engineered microbeads for adsorption of Th (IV) ions from liquid effluents. Journal of Environmental Chemical Engineering., 5(6), 5655–5667. doi:10.1016/j.jece.2017.10.048
  • Gore, P. M., Khurana, L., Siddique, S., Panicker, A., & Kandasubramanian, B. (2018). Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium (IV) ions from mimicked effluents. Environmental Science and Pollution Research, 25(4), 3320–3334. doi:10.1007/s11356-017-0618-6
  • Gore, P. M., Naebe, M., Wang, X., & Kandasubramanian, B. (2019a). Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chemical Engineering Journal and the Biochemical Engineering Journal., 374, 437–470. doi:10.1016/j.cej.2019.05.163
  • Gore, P. M., Naebe, M., Wang, X., & Kandasubramanian, B. (2019b). Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater. Journal of Hazardous Materials, 121823. (In press). doi:10.1016/j.jhazmat.2019.121823
  • Gore, P. M., Purushothaman, A., Naebe, M., Wang, X., & Kandasubramanian, B. (2019). Nanotechnology for Oil-water separation. In Advanced Research in Nanosciences for Water Technology (pp. 299–339). New York, USA: Springer Science+Business Media. doi:10.1007/978-3-030-02381-2_14
  • Gore, P., Khraisheh, M., & Kandasubramanian, B. (2018). Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environmental Science and Pollution Research, 25(12), 11729–11745. doi:10.1007/s11356-018-1304-z
  • Gulrajani, M. L. (1993). Degumming of silk with methylamine. Indian Journal of Fibre and Textile Research., 18, 72–78.
  • Gulrajani, M. L., & Sinha, S. (2008). Studies in degumming of silk with aliphatic amines. Journal of the Society of Dyers and Colourists, 109(7-8), 256–260. doi:10.1111/j.1478-4408.1993.tb01571.x
  • Gulrajani, M. L., Sethi, S., & Gupta, S. (2008). Some studies in degumming of silk with organic acids. Journal of the Society of Dyers and Colourists, 108, 79–86. doi:10.1111/j.1478-4408.1992.tb01420.x
  • Gupta, P., & Kandasubramanian, B. (2017). Directional fluid gating by Janus Membranes with heterogeneous wetting properties for selective oil-water separation. ACS Applied Materials & Interfaces, 9(22), 19102–19113. doi:10.1021/acsami.7b03313
  • Gupta, P., Lapalikar, V., Kundu, R., & Balasubramanian, K. (2016). Recent advances in membrane based waste water treatment technology: A review. Energy and Environment Focus, 5(4), 241–267. doi:10.1166/eef.2016.1227
  • Xu, H., Yi, W., Li, D., Zhang, P., Yoo, S., Bai, L. … Hou, X. (2019). Obtaining high mechanical performance silk fibers by feeding purified carbon nanotube/lignosulfonate composite to silkworms. RSC Advances, 9(7), 3558–3569. doi:10.1039/C8RA09934K
  • Ha, S.-W., Park, Y. H., & Hudson, S. M. (2003). Dissolution of Bombyx m ori silk fibroin in the calcium nitrate tetrahydrate − methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules, 4(3), 488–496. doi:10.1021/bm0255948
  • Ha, S.-W., Tonelli, A. E., & Hudson, S. M. (2005). Structural studies of bombyx m ori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules, 6(3), 1722–1731. doi:10.1021/bm050010y
  • Haggag, K., El-Sayed, H., & Allam, O. G. (2007). Degumming of silk using microwave-assisted treatments. Journal of Natural Fibers, 4(3), 1–22. doi:10.1300/J395v04n03_01
  • Holland, C., Numata, K., Rnjak-Kovacina, J., & Seib, F. P. (2019). The biomedical use of silk: Past, present, future. Advanced Healthcare Materials, 8(1), 1800465. doi:10.1002/adhm.201800465
  • Hu, Y., Yu, J., Liu, L., & Fan, Y. (2019). Preparation of natural amphoteric silk nanofibers by acid hydrolysis. Journal of Materials Chemistry B, 7(9), 1450–1459. doi:10.1039/C8TB03005G
  • Huang, W., Ling, S., Li, C., Omenetto, F. G., & Kaplan, D. L. (2018). Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 47(17), 6486–6504. doi:10.1039/C8CS00187A
  • Park, J., Lee, S.-G., Marelli, B., Lee, M., Kim, T. Oh, H.-K., … Kim, S., (2016). Eco-friendly photolithography using water-developable pure silk fibroin. RSC Advances, 6(45), 39330–39334. doi:10.1039/C6RA04516B
  • Kandasubramanian, B., & Govindaraj, P. (2014). Peeling model for cell adhesion on electrospun polymer nanofibres. Journal of Adhesion Science and Technology, 28(2), 171–185. doi:10.1080/01694243.2013.833402
  • Keten, S., Xu, Z., Ihle, B., & Buehler, M. J. (2010). Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Materials, 9(4), 359–367. doi:10.1038/nmat2704
  • Khanjani, S., & Morsali, A. (2014). Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red. Ultrasonics Sonochemistry, 21(4), 1424–1429. doi:10.1016/j.ultsonch.2013.12.012
  • Kumar, P., Gore, P. M., Magisetty, R., Kandasubramanian, B., & Shunmugam, R. (2020). Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications. Journal of Polymer Research, 27, 14. doi:10.1007/s10965-019-1981-4.
  • Kumar, V., & Kandasubramanian, B. (2017). Ionic-liquid-assisted three-dimensional caged silica ablative nanocomposites. Journal of Applied Polymer Science, 134(38), 45328. doi:10.1002/app.45328
  • Kumar, V., Singh, S., & Kandasubramanian, B. (2017). Thermal ablation and laser shielding characteristics of ionic liquid-microseeded functionalized nanoclay/resorcinol formaldehyde nanocomposites for armor protection. Polymer - Plastics Technology and Engineering, 56(14), 1542–1555. doi:10.1080/03602559.2017.1280684
  • Kunz, R. I., Brancalhão, R. M. C., Ribeiro, L. D F. C., & Natali, M. R. M. (2016). Silkworm sericin: Properties and biomedical applications. Biomed Research International, 2016, 1–19. doi:10.1155/2016/8175701
  • Campagnolo, L., Morselli, D., Magrì, D., Scarpellini, A., Demirci, C. Colombo, M., … Fragouli, D. (2019). Silk fibroin/orange peel foam: An efficient biocomposite for water remediation. Advanced Sustainable Systems, 3(1), 1800097. doi:10.1002/adsu.201800097
  • Jeong, L., Yeo, I.-S., Kim, H. N., Il Yoon, Y., Jang, D. H., Jung, S. Y. … Park, W. H. (2009). Plasma-treated silk fibroin nanofibers for skin regeneration. International Journal of Biological Macromolecules, 44(3), 222–228. doi:10.1016/j.ijbiomac.2008.12.008
  • Koh, L.-D., Cheng, Y., Teng, C.-P., Khin, Y.-W., Loh, X.-J., Tee, S.-Y. … Han, M-Y. (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 46, 86–110. doi:10.1016/j.progpolymsci.2015.02.001
  • Lefèvre, T., Rousseau, M.-E., & Pézolet, M. (2007). Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophysical Journal, 92(8), 2885–2895. doi:10.1529/biophysj.106.100339
  • Li, G., Liu, H., Li, T., & Wang, J. (2012). Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Materials Science and Engineering: C, 32(4), 627–636. doi:10.1016/j.msec.2011.12.013
  • Lo, C.-H., & Chao, Y. (2017). Degumming of silk fibers by CO2 supercritical fluid. Journal of Materials Science and Chemical Engineering, 05, 1–8. doi:10.4236/msce.2017.54001
  • Magisetty, R. P., Kumar, P., Gore, P. M., Ganivada, M., Shukla, A., Kandasubramanian, B., & Shunmugam, R. (2019). Electronic properties of Poly(1,6-heptadiynes) electrospun fibrous non-woven mat. Materials Chemistry and Physics, 223, 343–352. doi:10.1016/j.matchemphys.2018.11.020
  • Mahmoodi, N. M., Moghimi, F., Arami, M., & Mazaheri, F. (2010). Silk degumming using microwave irradiation as an environmentally friendly surface modification method. Fibers and Polymers, 11(2), 234–240. doi:10.1007/s12221-010-0234-2
  • Mishra, P., & Balasubramanian, K. (2014). Nanostructured microporous polymer composite imprinted with superhydrophobic camphor soot, for emphatic oil-water separation. RSC Advances., 4(95), 53291–53296. doi:10.1039/C4RA07410F
  • More, S. V., Khandelwal, H. B., Joseph, M. A., & Laxman, R. S. (2013). Enzymatic degumming of silk with microbial proteases. Journal of Natural Fibers, 10(2), 98–111. doi:10.1080/15440478.2012.761114
  • Müller, C., Hamedi, M., Karlsson, R., Jansson, R., Marcilla, R., Hedhammar, M., & Inganäs, O. (2011). Woven electrochemical transistors on silk fibers. Advanced Materials, 23(7), 898–901. doi:10.1002/adma.201003601
  • Nalvuran, H., Elçin, A. E., & Elçin, Y. M. (2018). Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. International Journal of Biological Macromolecules, 114, 77–84. doi:10.1016/j.ijbiomac.2018.03.072
  • Nultsch, K., Bast, L. K., Näf, M., Yakhlifi, S. E., Bruns, N., & Germershaus, O. (2018). Effects of silk degumming process on physicochemical, tensile, and optical properties of regenerated silk fibroin. Macromolecular Materials and Engineering, 303(12), 1800408. doi:10.1002/mame.201800408
  • Padamwar, M. N., & Pawar, A. P. (2004). Silk sericin and its applications: A review. Journal of Scientific and Industrial Research, 63, 323–329.
  • Patowary, M., Pathak, K., & Ananthakrishnan, R. (2016). Robust superhydrophobic and oleophilic silk fibers for selective removal of oil from water surfaces. RSC Advances, 6(77), 73660–73667. doi:10.1039/C6RA14723B
  • Periyasamy, S., Gulrajani, M. L., & Gupta, D. (2007). Preparation of a multifunctional mulberry silk fabric having hydrophobic and hydrophilic surfaces using VUV excimer lamp. Surface and Coatings Technology, 201(16-17), 7286–7291. doi:10.1016/j.surfcoat.2007.01.038
  • Porter, D., & Vollrath, F. (2009). Silk as a biomimetic ideal for structural polymers. Advanced Materials, 21(4), 487–492. doi:10.1002/adma.200801332
  • Pritchard, E. M., & Kaplan, D. L. (2011). Silk fibroin biomaterials for controlled release drug delivery. Expert Opinion on Drug Delivery, 8(6), 797–811. doi:10.1517/17425247.2011.568936
  • Qi, N., Zhao, B., Wang, S.-D., Al-Deyab, S. S., & Zhang, K.-Q. (2015). Highly flexible and conductive composite films of silk fibroin and silver nanowires for optoelectronic devices. RSC Advances, 5(63), 50878–50882. doi:10.1039/C5RA03501E
  • Qi, Y., Wang, H., Wei, K., Yang, Y., Zheng, R.-Y., Kim, I., & Zhang, K.-Q. (2017). A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. International Journal of Molecular Sciences, 18(3), 237. doi:10.3390/ijms18030237
  • R., Capelli, J. J., Amsden, G., Generali, S., Toffanin, V., Benfenati, M. Muccini, … Zamboni , (2011). Integration of silk protein in organic and light-emitting transistors. Organic Electronics, 12, 1146–1151. doi:10.1016/j.orgel.2011.04.005
  • Rajhans, A., Gore, P. M., Siddique, S. K., & Kandasubramanian, B. (2019). Ion-imprinted nanofibers of pvdf/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of europium (III) ions from Mimicked Effluent. Journal of Environmental Chemical Engineering, 7. doi:10.1016/j.jece.2019.103068
  • Sahoo, B. N., Balasubramanian, K., & Sucheendran, M. (2015). Thermally triggered transition of superhydrophobic characteristics of micro- and nanotextured multiscale rough surfaces. The Journal of Physical Chemistry C, 119, 14201–14212. doi:10.1021/acs.jpcc.5b02917
  • Shahid, M., Mohammad, F., Chen, G., Tang, R.-C., & Xing, T. (2016). Enzymatic processing of natural fibres: White biotechnology for sustainable development. Green Chemistry, 18(8), 2256–2281. doi:10.1039/C6GC00201C
  • Shubhra, Q. T., Saha, M., Alam, A., Beg, M., & Khan, M. A. (2010). Effect of matrix modification by natural rubber on the performance of silk-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 29(22), 3338–3344. doi:10.1177/0731684410375640
  • Sionkowska, A., Płanecka, A., Lewandowska, K., & Michalska, M. (2014). The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures. Journal of Photochemistry and Photobiology B: Biology, 140, 301–305. doi:10.1016/j.jphotobiol.2014.08.017
  • Srivastava, C. M., & Purwar*, R. (2014). Recent developments in regenerated silk fibroin fibers. International Journal of Research in Advent Technology, 2, 2321–9637.
  • Tansil, N. C., Koh, L. D., & Han, M. Y. (2012). Functional silk: Colored and luminescent. Advanced Materials, 24(11), 1388–1397. doi:10.1002/adma.201104118
  • Thakur, K., Rajhans, A., & Kandasubramanian, B. (2019). Starch/PVA hydrogels for oil/water separation. Environmental Science and Pollution Research, 26, 32013–32028. doi:10.1007/s11356-019-06327-z
  • Thiel, B. L., Guess, K. B., & Viney, C. (1997). Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers, 41(7), 703–719. doi:10.1002/. (SICI)1097-0282(199706)41:7 < 703::AID-BIP1 > 3.0.CO;2-T. doi:10.1002/(SICI)1097-0282(199706)41:7<703::AID-BIP1>3.0.CO;2-T
  • Tsunokaye, A. R. (2008). Degumming action of soap on raw silk. Journal of the Society of Dyers and Colourists, 48(6), 164–167. doi:10.1111/j.1478-4408.1932.tb01705.x
  • Vyas, S. K., & Shukla, S. R. (2016). Comparative study of Degumming of silk varieties by different techniques. Journal of the Textile Institute, 107, 191–199. doi:10.1080/00405000.2015.1020670
  • W., Zhang, C., Ye, K., Zheng, J., Zhong, Y., Tang, Y. Fan, …  Kaplan, (2018). Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano, 12(7), 6968–6977. doi:10.1021/acsnano.8b02430
  • Wang, H.-Y., & Zhang, Y.-Q. (2013). Effect of regeneration of liquid silk fibroin on its structure and characterization. Soft Matter, 9(1), 138–145. doi:10.1039/C2SM26945G
  • Wang, L., Luo, Z., Zhang, Q., Guan, Y., Cai, J., You, R., & Li, X. (2019). Effect of degumming methods on the degradation behavior of silk fibroin biomaterials. Fibers and Polymers, 20(1), 45–50. doi:10.1007/s12221-019-8658-9
  • Wang, W., Pan, Y., Gong, K., Zhou, Q., Zhang, T., & Li, Q. (2019). A comparative study of ultrasonic degumming of silk sericin using citric acid, sodium carbonate and papain. Coloration Technology, 135(3), 195–201. doi:10.1111/cote.12392
  • Yalc, E. (2014). Silk Fibroin/Nylon-6 Blend Nanofilter Matrix for Copper Removal from Aqueous Solution. Clean Technologies and Environmental Policy, 17, 921–934. doi:10.1007/s10098-014-0845-1.
  • Yi, B., Zhang, H., Yu, Z., Yuan, H., Wang, X., & Zhang, Y. (2018). Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration. Journal of Materials Chemistry B, 6(23), 3934–3945. doi:10.1039/C8TB00535D
  • Zhou, C.-Z., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z.-G., & Janin, J. (2001). Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins: Structure, Function, and Genetics, 44(2), 119–122. doi:10.1002/prot.1078
  • Zhu, L., Xu, W., Ma, M., & Zhou, H. (2010). Effect of plasma treatment of silk fibroin powder on the properties of silk fibroin powder/polyurethane blend film. Polymer Engineering & Science, 50(9), 1705–1712. doi:10.1002/pen.21697

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.