612
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of tensile behaviour of hyperelastic auxetic cellular materials with re-entrant hexagonal cells

, &
Pages 173-186 | Received 12 Oct 2019, Accepted 08 Feb 2020, Published online: 24 Feb 2020

References

  • Alderson, K. L., Alderson, A., Smart, G., Simkins, V. R., & Davies, P. J. (2002). Auxetic polypropylene fibres: Part 1 - Manufacture and characterisation. Plastics, Rubber and Composites, 31(8), 344–349. doi:10.1179/146580102225006495
  • Arkusz, K., Klekiel, T., Slawinski, G., & Bedzinski, R. (2019). Influence of energy absorbers on Malgaigne fracture mechanism in lumbar-pelvic system under vertical impact load. Computer Methods in Biomechanics and Biomedical Engineering, 22(3), 313–323. doi:10.1080/10255842.2018.1553238
  • Attard, D., Calleja, D., & Grima, J. N. (2018). Out-of-plane doming behaviour from constrained auxetics. Smart Materials and Structures, 27(1), 015020. doi:10.1088/1361-665X/aa9e62
  • Babaee, S., Shim, J., Weaver, J. C., Chen, E. R., Patel, N., & Bertoldi, K. (2013). 3D soft metamaterials with negative poisson’s ratio. Advanced Materials, 25(36), 5044–5049. doi:10.1002/adma.201301986
  • Bhullar, S. K., Ko, J., Cho, Y., & Jun, M. (2015). Fabrication and characterization of nonwoven auxetic polymer stent. Polymer-Plastics Technology and Engineering, 54(15), 1553–1559. doi:10.1080/03602559.2014.986812
  • Bianchi, M., Frontoni, S., Scarpa, F., & Smith, C. W. (2011). Density change during the manufacturing process of PU-PE open cell auxetic foams. Physica Status Solidi (B)), 248(1), 30–38. doi:10.1002/pssb.201083966
  • Bianchi, M., Scarpa, F., Banse, M., & Smith, C. W. (2011). Novel generation of auxetic open cell foams for curved and arbitrary shapes. Acta Materialia, 59(2), 686–691. doi:10.1016/j.actamat.2010.10.006
  • Bodaghi, M., Damanpack, A. R., Hu, G. F., & Liao, W. H. (2017). Large deformations of soft metamaterials fabricated by 3D printing. Materials & Design, 131, 81–91. doi:10.1016/j.matdes.2017.06.002
  • Cao, J., & Shi, Y. (2009). ABAQUS finite element analysis FAQ. Beijing: Machinery Industry Press.
  • Chan, N., & Evans, K. E. (1997). Fabrication methods for auxetic foams. Journal of Materials Science, 32(22), 5945–5953. doi:10.1023/A:1018606926094
  • Compton, B. G., & Lewis, J. A. (2014). 3D-printing of lightweight cellular composites. Advanced Materials, 26(34), 5930–5935. doi:10.1002/adma.201401804
  • Critchley, R., Corni, I., Wharton, J. A., Walsh, F. C., Wood, R. J. K., & Stokes, K. R. (2013). The preparation of auxetic foams by three-dimensional printing and their characteristics. Advanced Engineering Materials, 15(10), 980–985. doi:10.1002/adem.201300030
  • Duncan, O., Foster, L., Senior, T., Allen, T., & Alderson, A. (2016). A comparison of novel and conventional fabrication methods for auxetic foams for sports safety applications. Procedia Engineering, 147, 384–389. doi:10.1016/j.proeng.2016.06.323
  • Duncan, O., Shepherd, T., Moroney, C., Foster, L., Venkatraman, P., Winwood, K., … Alderson, A. (2018). Review of auxetic materials for sports applications: Expanding options in comfort and protection. Applied Sciences, 8(6), 941. doi:10.3390/app8060941
  • Ge, Z., & Hu, H. (2013). Innovative three-dimensional fabric structure with negative Poisson’s ratio for composite reinforcement. Textile Research Journal, 83(5), 543–550. doi:10.1177/0040517512454185
  • Ge, Z., Hu, H., & Liu, Y. (2015). Numerical analysis of deformation behavior of a 3D textile structure with negative Poisson’s ratio under compression. Textile Research Journal, 85(5), 548–557. doi:10.1177/0040517514548813
  • Ge, Z., Hu, H., & Liu, S. (2016). A novel plied yarn structure with negative Poisson’s ratio. The Journal of the Textile Institute, 107(5), 578–588. doi:10.1080/00405000.2015.1049069
  • Grima, J. N., Alderson, A., & Evans, K. E. (2005). Auxetic behaviour from rotating rigid units. Physica Status Solidi (B)), 242(3), 561–575. doi:10.1002/pssb.200460376
  • Grima, J. N., Attard, D., Gatt, R., & Cassar, R. N. (2009). A novel process for the manufacture of auxetic foams and for their re-conversion to conventional form. Advanced Engineering Materials, 11(7), 533–535. doi:10.1002/adem.200800388
  • Han, S. C., Kang, D. S., & Kang, K. (2019). Two nature-mimicking auxetic materials with potential for high energy absorption. Materials Today, 26, 30–39. doi:10.1016/j.mattod.2018.11.004
  • He, C., Liu, P., & Griffin, A. C. (1998). Toward negative Poisson ratio polymers through molecular design. Macromolecules, 31(9), 3145–3147. doi:10.1021/ma970787m
  • Hibbitt, Karlsson & Sorensen Inc. (2000). ABAQUS Standard: Example problems manual: Volume 2: Version 6.1. Pawtucket: Hibbitt, Karlsson & Sorensen, Inc.
  • Hook, P., & Evans, K. (2006). How do auxetic materials work. Retrieved from http://www.auxetix.com/science.htm
  • Hou, Y., Neville, R., Scarpa, F., Remillat, C., Gu, B., & Ruzzene, M. (2014). Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading. Composites Part B: Engineering, 59, 33–42. doi:10.1016/j.compositesb.2013.10.084
  • Hu, H., Zhang, M., & Liu, Y. (2019a). Introduction. Auxetic Textiles (pp. 1–17). Woodhead Publishing. doi:10.1016/B978-0-08-102211-5.00001-2
  • Hu, H., Zhang, M., & Liu, Y. (2019b). Auxetic fibres and yarns. Auxetic Textiles (pp. 93–140). Woodhead Publishing. doi:10.1016/B978-0-08-102211-5.00004-8
  • Hu, H., & Zulifqar, A. (2017). Auxetic textile materials - A review. Journal of Textile Engineering & Fashion Technology, 1(1), 1–15. doi:10.15406/jteft.2017.01.00002
  • Imbalzano, G., Linforth, S., Ngo, T. D., Lee, P. V. S., & Tran, P. (2018). Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Composite Structures, 183, 242–261. doi:10.1016/j.compstruct.2017.03.018
  • Jiang, N., & Hu, H. (2018). A study of tubular braided structure with negative Poisson’s ratio behavior. Textile Research Journal, 88(24), 2810–2824. doi:10.1177/0040517517732086
  • Jiang, Y., Liu, Z., Matsuhisa, N., Qi, D., Leow, W. R., Yang, H., … Chen, X. (2018). Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Advanced Materials, 30(12), e1706589. doi:10.1002/adma.201706589
  • Kim, H. W., Kim, T. Y., Park, H. K., You, I., Kwak, J., Kim, J. C., … Jeong, U. (2018). Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Applied Materials & Interfaces, 10(46), 40141–40148. doi:10.1021/acsami.8b13857
  • Lakes, R. (1987). Foam structures with negative Poisson’s ratio. Science, 235(4792), 1038–1040. doi:10.1126/science.235.4792.1038
  • Melnykowycz, M., Tschudin, M., & Clemens, F. (2017). Piezoresistive carbon-based hybrid sensor for body-mounted biomedical applications. IOP Conference Series: Materials Science and Engineering, 175, 012006. doi:10.1088/1757-899X/175/1/012006
  • Miller, W., Hook, P. B., Smith, C. W., Wang, X., & Evans, K. E. (2009). The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Composites Science and Technology, 69(5), 651–655. doi:10.1016/j.compscitech.2008.12.016
  • Miller, W., Ren, Z., Smith, C. W., & Evans, K. E. (2012). A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement. Composites Science and Technology, 72(7), 761–766. doi:10.1016/j.compscitech.2012.01.025
  • Neville, R. M., Chen, J., Guo, X., Zhang, F., Wang, W., Dobah, Y., … Peng, H.-X. (2017). A Kirigami shape memory polymer honeycomb concept for deployment. Smart Materials and Structures, 26(5), 05LT03. doi:10.1088/1361-665X/aa6b6d
  • Ou, J., Ma, Z., Peters, J., Dai, S., Vlavianos, N., & Ishii, H. (2018). KinetiX - designing auxetic-inspired deformable material structures. Computers & Graphics, 75, 72–81. doi:10.1016/j.cag.2018.06.003
  • Ravirala, N., Alderson, K. L., Davies, P. J., Simkins, V. R., & Alderson, A. (2006). Negative poisson’s ratio polyester fibers. Textile Research Journal, 76(7), 540–546. doi:10.1177/0040517506065255
  • Roper, C. S., Schubert, R. C., Maloney, K. J., Page, D., Ro, C. J., Yang, S. S., & Jacobsen, A. J. (2015). Scalable 3D bicontinuous fluid networks: Polymer heat exchangers toward artificial organs. Advanced Materials, 27(15), 2479–2484. doi:10.1002/adma.201403549
  • Subramani, P., Rana, S., Ghiassi, B., Fangueiro, R., Oliveira, D. V., Lourenco, P. B., & Xavier, J. (2016). Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided composites. Composites Part B: Engineering, 93, 132–142. doi:10.1016/j.compositesb.2016.02.058
  • Ugbolue, S. C., Kim, Y. K., Warner, S. B., Fan, Q., & Yang, C. (2014, July 08). Auxetic fabric structures and related fabrication methods. USA Patent No. US 8,772,187 B2. USA: US Patent Office.
  • Verma, P., Shofner, M. L., Lin, A., Wagner, K. B., & Griffin, A. C. (2015). Inducing out-of-plane auxetic behavior in needle-punched nonwovens. Physica Status Solidi (B)), 252(7), 1455–1464. doi:10.1002/pssb.201552036
  • Wang, C., Wang, W., Zhao, W., Wang, Y., & Zhou, G. (2018). Structure design and multi-objective optimization of a novel NPR bumper system. Composites Part B: Engineering, 153, 78–96. doi:10.1016/j.compositesb.2018.07.024
  • Wright, J. R., Burns, M. K., James, E., Sloan, M. R., & Evans, K. E. (2012). On the design and characterisation of low-stiffness auxetic yarns and fabrics. Textile Research Journal, 82(7), 645–654. doi:10.1177/0040517512436824
  • Zhang, G. H., Ghita, O., & Evans, K. E. (2015). The fabrication and mechanical properties of a novel 3-component auxetic structure for composites. Composites Science and Technology, 117, 257–267. doi:10.1016/j.compscitech.2015.06.012
  • Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., … Spadaccini, C. M. (2014). Ultralight, ultrastiff mechanical metamaterials. Science, 344(6190), 1373–1377. doi:10.1126/science.1252291

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.