619
Views
7
CrossRef citations to date
0
Altmetric
Review

Silver nanoparticles against SARS-CoV-2 and its potential application in medical protective clothing – a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2825-2838 | Received 14 Jul 2021, Accepted 19 Oct 2021, Published online: 29 Oct 2021

References

  • Abou-Okeil, A., Sheta, A. M., Amr, A., & Ali, M. A. (2012). Wound dressing based on nonwoven viscose fabrics. Carbohydrate Polymers, 90(1), 658–666. https://doi.org/10.1016/j.carbpol.2012.05.093
  • Abramov, O. V., Gedanken, A., Koltypin, Y., Perkas, N., Perelshtein, I., Joyce, E., & Mason, T. J. (2009). Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surface and Coatings Technology, 204(5), 718–722. https://doi.org/10.1016/j.surfcoat.2009.09.030
  • Ahmed, T., & Ogulata, R. T. (2021). A review on silver nanoparticles -green synthesis, antimicrobial action and application in textiles. Journal of Natural Fibers, 0(0), 1–22. https://doi.org/10.1080/15440478.2021.1964135
  • Akbari, M., Morad, R., & Maaza, M. (2020). First principle study of silver nanoparticle interactions with antimalarial drugs extracted from Artemisia annua plant. Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology, 22(11), 331. https://doi.org/10.1007/s11051-020-05058-4
  • Anderson, E. L., Turnham, P., Griffin, J. R., & Clarke, C. C. (2020). Consideration of the aerosol transmission for COVID-19 and public health. Risk Analysis: An Official Publication of the Society for Risk Analysis, 40(5), 902–907. https://doi.org/10.1111/risa.13500
  • Aragaw, T. A. (2020, October). Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar Pollut Bull, 159, 111517. https://doi.org/10.1016/j.marpolbul.2020.111517
  • Balagna, C., Perero, S., Percivalle, E., Nepita, E. V., & Ferraris, M. (2020, May). Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics, 1, 100006. https://doi.org/10.1016/j.oceram.2020.100006
  • Banerjee, M., Pal, R., & Bhadada, S. K. (2021, June). Intercepting the deadly trinity of mucormycosis, diabetes and COVID-19 in india. Postgraduate Medical Journal, postgradmedj-2021-140537. https://doi.org/10.1136/postgradmedj-2021-140537
  • Baszkin, A., & Norde, W. (1999). Physical chemistry of biological interfaces. CRC Press.
  • Behzad, F., Naghib, S. M., Kouhbanani, M. A. J., Tabatabaei, S. N., Zare, Y., & Rhee, K. Y. (2021, February). An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. Journal of Industrial and Engineering Chemistry, 94, 92–104. https://doi.org/10.1016/j.jiec.2020.12.005
  • Bianchini, A., Bowles, K. C., Brauner, C. J., Gorsuch, J. W., Kramer, J. R., & Wood, C. M. (2002). Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to daphnia magna. Part 2: Toxicity results. Environmental Toxicology and Chemistry, 21(6), 1294–1300. https://doi.org/10.1002/etc.5620210626
  • Borkow, G., Lustiger, D., Melamed, E., Herrera, V., Ackerman, D., Reid, S. P., & Santarpia, J. (2020). Copper-oxide impregnated respiratory masks may significantly reduce the risk of SARS-CoV-2 cross-contamination. In Review. https://doi.org/10.21203/rs.3.rs-60610/v1.
  • Borkow, G., Zhou, S. S., Page, T., & Gabbay, J. (2010). A novel anti-influenza copper oxide containing respiratory face mask. PLOS One., 5(6), e11295. https://doi.org/10.1371/journal.pone.0011295
  • Burrell, C. J., Howard, C. R., & Murphy, F. A. (2017). Coronaviruses. In Fenner and White’s medical virology (pp. 437–446). Elsevier. https://doi.org/10.1016/B978-0-12-375156-0.00031-X.
  • Cappitelli, F., & Sorlini, C. (2008). Microorganisms attack synthetic polymers in items representing our cultural heritage. Applied and Environmental Microbiology, 74(3), 564–569. https://doi.org/10.1128/AEM.01768-07
  • Cevik, M., Kuppalli, K., Kindrachuk, J., & Peiris, M. (2020, October). Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ (Clinical Research ed.), 371, m3862. https://doi.org/10.1136/bmj.m3862
  • Chauhan, P., Kumar, A., & Bhushan, B. (2019, February). Self-Cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. Journal of Colloid and Interface Science, 535, 66–74. https://doi.org/10.1016/j.jcis.2018.09.087
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K.P. Y., Yen, H.-L., Chan, M. C. W., Peiris, M., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in Different Environmental Conditions. The Lancet Microbe, 1(1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3
  • Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? The Journal of Antimicrobial Chemotherapy, 59(4), 587–590. https://doi.org/10.1093/jac/dkm006
  • Christensen, F. M., Johnston, H. J., Stone, V., Aitken, R. J., Hankin, S., Peters, S., & Aschberger, K. (2010). Nano-Silver - feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology, 4(3), 284–295. https://doi.org/10.3109/17435391003690549
  • Clem Gruen, L. (1975). Interaction of amino acids with silver(I) ions. Biochimica et Biophysica Acta (BBA) - Protein Structure, 386(1), 270–274. https://doi.org/10.1016/0005-2795(75)90268-8
  • Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831
  • Dillard, C. J., & Tappel, A. L. (1986). Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. Journal of Inorganic Biochemistry, 28(1), 13–20. https://doi.org/10.1016/0162-0134(86)80019-8
  • Dogra, A., Goyal, B., & Maulik Sharma, A. (2020). Corona virus: a novel outbreak. Biomedical and Pharmacology Journal, 13(1), 05–10. https://biomedpharmajournal.org/vol13no1/corona-virus-a-novel-outbreak/. https://doi.org/10.13005/bpj/1853
  • Dubey, P., Matai, I., Kumar, S. U., Sachdev, A., Bhushan, B., & Gopinath, P. (2015, July). Perturbation of cellular mechanistic system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials. Adv Colloid Interface Sci, 221, 4–21. https://doi.org/10.1016/j.cis.2015.02.007
  • Durán, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3(2), 203–208. https://doi.org/10.1166/jbn.2007.022
  • Eikenberry, S. E., Mancuso, M., Iboi, E., Phan, T., Eikenberry, K., Kuang, Y., Kostelich, E., & Gumel, A. B. (2020). To mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infectious Disease Modelling, 5, 293–308. https://doi.org/10.1016/j.idm.2020.04.001
  • Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3(1), 6. https://doi.org/10.1186/1477-3155-3-6
  • Erickson, R. J., Brooke, L. T., Kahl, M. D., Venter, F. V., Harting, S. L., Markee, T. P., & Spehar, R. L. (1998). Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environmental Toxicology and Chemistry, 17(4), 572–578. https://doi.org/10.1002/etc.5620170407
  • Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., & Lead, J. R. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment International, 37(2), 517–531. https://doi.org/10.1016/j.envint.2010.10.012
  • Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  • Gadkari, R. R., Ali, W., Das, A., & Alagirusamy, R. (2020, May). Configuration of a unique antibacterial needle-punched nonwoven fabric from silver impregnated polyester nanocomposite fibres. Journal of Industrial Textiles, 1–17. https://doi.org/10.1177/1528083720924727
  • Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S. S., Bellare, J., Dhavale, D. D., Jabgunde, A., & Chopade, B. A. (2012). Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483–496. https://doi.org/10.2147/IJN.S24793
  • Gorup, L. F., Longo, E., Leite, E. R., & Camargo, E. R. (2011). Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method. Journal of Colloid and Interface Science, 360(2), 355–358. https://doi.org/10.1016/j.jcis.2011.04.099
  • Gudbjartsson, D. F., Norddahl, G. L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., Arnthorsson, A. O., Helgason, D., Bjarnadottir, K., Ingvarsson, R. F., Thorsteinsdottir, B., Kristjansdottir, S., Birgisdottir, K., Kristinsdottir, A. M., Sigurdsson, M. I., Arnadottir, G. A., Ivarsdottir, E. V., Andresdottir, M., Jonsson, F., … Stefansson, K. (2020). Humoral immune response to SARS-CoV-2 in Iceland. The New England Journal of Medicine, 383(18), 1724–1734. https://doi.org/10.1056/NEJMoa2026116
  • Gupta, D. (2007, June). Antimicrobial treatments for textiles. IJFTR, 32(2), 254-263. http://nopr.niscair.res.in/handle/123456789/419.
  • Habash, M. B., Park, A. J., Vis, E. C., Harris, R. J., & Khursigara, C. M. (2014). Synergy of silver nanoparticles and aztreonam against pseudomonas aeruginosa PAO1 biofilms. Antimicrobial Agents and Chemotherapy, 58(10), 5818–5830. https://doi.org/10.1128/AAC.03170-14
  • Hahn, S., Schneider, K., Gartiser, S., Heger, W., & Mangelsdorf, I. (2010). Consumer exposure to biocides-identification of relevant sources and evaluation of possible health effects. Environmental Health : a Global Access Science Source, 9(1), 7. https://doi.org/10.1186/1476-069X-9-7
  • Haldar, J., Chen, J., Tumpey, T. M., Gubareva, L. V., & Klibanov, A. M. (2008). Hydrophobic Polycationic coatings inactivate wild-type and Zanamivir- and/or oseltamivir-resistant human and avian influenza viruses. Biotechnology Letters, 30(3), 475–479. https://doi.org/10.1007/s10529-007-9565-5
  • Hasöksüz, M., Kiliç, S., & Saraç, F. (2020). Coronaviruses and SARS-COV-2. Turkish Journal of Medical Sciences, 50(SI-1), 549–556. https://doi.org/10.3906/sag-2004-127
  • Ho, T. L. (1975). The hard soft acids bases (Hsab) principle and organic chemistry.
  • Hodek, J., Zajícová, V., Lovětinská-Šlamborová, I., Stibor, I., Müllerová, J., & Weber, J. (2016). Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbiology, 16(1), 56. https://doi.org/10.1186/s12866-016-0675-x
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • House, J. E., & House, K. A. (2016). Chapter 14 - phosphorus, arsenic, antimony, and bismuth. In James E. House and Kathleen A. House (Eds.), Descriptive inorganic chemistry (3rd ed., pp. 215–234). Academic Press. https://doi.org/10.1016/B978-0-12-804697-5.00014-2.
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Huang, Y., Yang, C., Xu, X-f., Xu, W., & Liu, S-w. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
  • Huy, T. Q., Hien Thanh, N. T., Thuy, N. T., Chung, P. V., Hung, P. N., Le, A.-T., & Hong Hanh, N. T. (2017, March). Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus. Journal of Virological Methods, 241, 52–57. https://doi.org/10.1016/j.jviromet.2016.12.015
  • Idumah, C. I. (2020, December). Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19. The Journal of the Textile Institute, 1–21. https://doi.org/10.1080/00405000.2020.1858600
  • Ivask, A., Elbadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., Chang, C. H., Liu, R., Tolaymat, T., Telesca, D., Zink, J. I., Cohen, Y., Holden, P. A., & Godwin, H. A. (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 8(1), 374–386. https://doi.org/10.1021/nn4044047
  • Jayaweera, M., Perera, H., Gunawardana, B., & Manatunge, J. (2020, September). Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environmental Research, 188, 109819. https://doi.org/10.1016/j.envres.2020.109819
  • Jeong, S. H., Yeo, S. Y., & Yi, S. C. (2005). The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materials Science, 40(20), 5407–5411. https://doi.org/10.1007/s10853-005-4339-8
  • Jeremiah, S. S., Miyakawa, K., Morita, T., Yamaoka, Y., & Ryo, A. (2020). Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 533(1), 195–200. https://doi.org/10.1016/j.bbrc.2020.09.018
  • Ji, J. H., Jung, J. H., Kim, S. S., Yoon, J.-U., Park, J. D., Choi, B. S., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S., Shin, J. H., Sung, J. H., Song, K. S., & Yu, I. J. (2007). Twenty-Eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 19(10), 857–871. https://doi.org/10.1080/08958370701432108
  • Snyder, D. E., Jr. (2000). Anti-bacterial/anti-viral coatings, coating process and parameters thereof. United States US6120784A, filed October 16, 1998, and issued September 19, 2000. https://patents.google.com/patent/US6120784A/en.
  • Kanchi, S., & Ahmed, S. Eds. (2018). Green metal nanoparticles: Synthesis, characterization and their applications. Wiley-Scrivener.
  • Karki, G. (2020). Influenza virus-structure, types, nomenclature, transmission, pathogenesis, diseases, diagnosis and treatment. Online Biology Notes (blog). March 6, 2020. https://www.onlinebiologynotes.com/influenza-virus-structure-types-nomenclature-transmission-pathogenesis-diseases-diagnosis-and-treatment/.
  • Kashiwagi, Y., Yamamoto, M., & Nakamoto, M. (2006). Facile Size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. Journal of Colloid and Interface Science, 300(1), 169–175. https://doi.org/10.1016/j.jcis.2006.03.041
  • Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y.-S., Jeong, D. H., & Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine : nanotechnology, Biology, and Medicine, 3(1), 95–101. https://doi.org/10.1016/j.nano.2006.12.001
  • Kim, S.-H., Lee, H.-S., Ryu, D.-S., Choi, S.-J., & Lee, D.-S. (2011). Antibacterial activity of silver-nanoparticles against staphylococcus aureus and Escherichia coli. Microbiology and Biotechnology Letters, 39(1), 77–85. https://www.koreascience.or.kr/article/JAKO201106737198819.page.
  • Lara, H. H., Ixtepan-Turrent, L., Garza-Treviño, E. N., & Rodriguez-Padilla, C. (2010). PVP-Coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. Journal of Nanobiotechnology, 8(1), 15. https://doi.org/10.1186/1477-3155-8-15
  • Lebeau, G., Vagner, D., Frumence, É., Ah-Pine, F., Guillot, X., Nobécourt, E., Raffray, L., & Gasque, P. (2020). Deciphering SARS-CoV-2 virologic and immunologic features. International Journal of Molecular Sciences, 21(16), 5932. https://doi.org/10.3390/ijms21165932
  • Lee, P. C., & Meisel, D. (1982). Adsorption and surface-enhanced raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 86(17), 3391–3395. https://doi.org/10.1021/j100214a025
  • Lee, A. W. L., Neo, E. R. K., Khoo, Z.-Y., Yeo, Z., Tan, Y. S., Chng, S., Yan, W., Lok, B. K., & Low, J. S. C. (2021, July). Life cycle assessment of single-use surgical and embedded filtration layer (EFL) reusable face mask. Resources, Conservation, and Recycling, 170, 105580. https://doi.org/10.1016/j.resconrec.2021.105580
  • Leung, N. H. L., Chu, D. K. W., Shiu, E. Y. C., Chan, K.-H., McDevitt, J. J., Hau, B. J. P., Yen, H.-L., Li, Y., Ip, D. K. M., Peiris, J. S. M., Seto, W.-H., Leung, G. M., Milton, D. K., & Cowling, B. J. (2020). Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 26(5), 676–680. https://doi.org/10.1038/s41591-020-0843-2
  • Liao, C., Li, Y., & Tjong, S. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20(2), 449. https://doi.org/10.3390/ijms20020449
  • Li, Y., Lin, Z., Zhao, M., Xu, T., Wang, C., Hua, L., Wang, H., Xia, H., & Zhu, B. (2016). Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ros-mediated signaling pathways. ACS Applied Materials & Interfaces, 8(37), 24385–24393. https://doi.org/10.1021/acsami.6b06613
  • Lim, S.-H., & Hudson, S. M. (2004). Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile Finish. Carbohydrate Polymers, 56(2), 227–234. https://doi.org/10.1016/j.carbpol.2004.02.005
  • Lim, D. C., Lopez-Salido, I., & Kim, Y. D. (2006). Characterization of Ag nanoparticles on SI wafer prepared using Tollen’s reagent and acid-etching. Applied Surface Science, 253(2), 959–965. https://doi.org/10.1016/j.apsusc.2006.01.040
  • Liu, X., & Zhang, S. (2020). COVID-19: Face masks and human-to-human transmission. Influenza and Other Respiratory Viruses, 14(4), 472–473. https://doi.org/10.1111/irv.12740
  • Li, W.-R., Xie, X.-B., Shi, Q.-S., Zeng, H.-Y., Ou-Yang, Y.-S., & Chen, Y.-B. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 85(4), 1115–1122. https://doi.org/10.1007/s00253-009-2159-5
  • Maneewattanapinyo, P., Banlunara, W., Thammacharoen, C., Ekgasit, S., & Kaewamatawong, T. (2011). An evaluation of acute toxicity of colloidal silver nanoparticles. Journal of Veterinary Medical Science, 73(11), 1417–1106220557. https://doi.org/10.1292/jvms.11-0038
  • Martí, M., Tuñón-Molina, A., Aachmann, F., Muramoto, Y., Noda, T., Takayama, K., & Serrano-Aroca, Á. (2021). Protective face mask filter capable of inactivating SARS-CoV-2, and methicillin-resistant staphylococcus aureus and staphylococcus epidermidis. Polymers, 13(2), 207. https://doi.org/10.3390/polym13020207
  • Matthews, B. R., Holan, G. (2001). Antiviral dendrimers. United States US6190650B1, filed June 15, 1995, and issued February 20, 2001. https://patents.google.com/patent/US6190650B1/en.
  • Mendis, E., Rajapakse, N., Byun, H.-G., & Kim, S.-K. (2005). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences, 77(17), 2166–2178. https://doi.org/10.1016/j.lfs.2005.03.016
  • Miao, A.-J., Schwehr, K. A., Xu, C., Zhang, S.-J., Luo, Z., Quigg, A., & Santschi, P. H. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution, 157(11), 3034–3041. https://doi.org/10.1016/j.envpol.2009.05.047
  • Millet, J. K., & Whittaker, G. R. (2018, April). Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology, Nidovirus Research, 517, 3–8. https://doi.org/10.1016/j.virol.2017.12.015
  • Möritz, M., Peters, H., Nipko, B., & Rüden, H. (2001). Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems. International Journal of Hygiene and Environmental Health, 203(5-6), 401–409. https://doi.org/10.1078/1438-4639-00054
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
  • Morris, D., Ansar, M., Speshock, J., Ivanciuc, T., Qu, Y., Casola, A., & Garofalo, R. (2019). Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses, 11(8), 732. https://doi.org/10.3390/v11080732
  • Mortola, E., & Roy, P. (2004). Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Letters, 576(1-2), 174–178. https://doi.org/10.1016/j.febslet.2004.09.009
  • Mosselhy, D. A., Kareinen, L., Kivistö, I., Aaltonen, K., Virtanen, J., Ge, Y., & Sironen, T. (2021). Copper-Silver nanohybrids: SARS-CoV-2 inhibitory surfaces. Nanomaterials, 11(7), 1820. https://doi.org/10.3390/nano11071820
  • Mowafi, S., Rehan, M., Mashaly, H. M., Abou El-Kheir, A., & Emam, H. E. (2017). Influence of silver nanoparticles on the fabrics functions prepared by in-situ technique. The Journal of the Textile Institute, 108(10), 1828–1839. https://doi.org/10.1080/00405000.2017.1292649
  • Mukhopadhyay, A., & Kumar Midha, V. (2008). A review on designing the waterproof breathable fabrics part i: fundamental principles and designing aspects of breathable fabrics. Journal of Industrial Textiles, 37(3), 225–262. https://doi.org/10.1177/1528083707082164
  • Nadiger, V. G., & Shukla, S. R. (2016). Antibacterial properties of silk fabric treated with silver nanoparticles. The Journal of the Textile Institute, 107(12), 1543–1553. https://doi.org/10.1080/00405000.2015.1129756
  • Neal, A. L. (2008). What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology (London, England), 17(5), 362–371. https://doi.org/10.1007/s10646-008-0217-x
  • Neuman, B. W., Kiss, G., Kunding, A. H., Bhella, D., Baksh, M. F., Connelly, S., Droese, B., Klaus, J. P., Makino, S., Sawicki, S. G., Siddell, S. G., Stamou, D. G., Wilson, I. A., Kuhn, P., & Buchmeier, M. J. (2011). A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology, 174(1), 11–22. https://doi.org/10.1016/j.jsb.2010.11.021
  • O’Dowd, K., Nair, K. M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., & Pillai, S. C. (2020). Face masks and respirators in the fight against the COVID-19 pandemic: A review of current materials, advances and future perspectives. Materials, 13(15), 3363. https://doi.org/10.3390/ma13153363
  • Orłowski, P., Kowalczyk, A., Tomaszewska, E., Ranoszek-Soliwoda, K., Węgrzyn, A., Grzesiak, J., Celichowski, G., Grobelny, J., Eriksson, K., & Krzyzowska, M. (2018). Antiviral activity of tannic acid modified silver nanoparticles: potential to activate immune response in herpes genitalis. Viruses, 10(10), 524. https://doi.org/10.3390/v10100524
  • Park, W. B., Kwon, N. J., Choi, S. J., Kang, C. K., Choe, P. G., Kim, J. Y., Yun, J., Lee, G. W., Seong, M. W., Kim, N. J., Seo, J. S., & Oh, M. D. (2020). Virus isolation from the first patient with SARS-CoV-2 in Korea. Journal of Korean Medical Science, 35(7), e84. https://doi.org/10.3346/jkms.2020.35.e84
  • Parthasarathi, V., & Thilagavathi, G. (2013). Developing antiviral surgical gown using nonwoven fabrics for health care sector. Afr Health Sci, 13(2), 327–332. https://doi.org/10.4314/ahs.v13i2.18
  • Pastoriza-Santos, I., & Liz-Marzán, L. M. (2000). Binary cooperative complementary nanoscale interfacial materials. reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure and Applied Chemistry, 72(1-2), 83–90. https://doi.org/10.1351/pac200072010083
  • Pellieux, C., Dewilde, A., Pierlot, C., & Aubry, J.-M. (2000). [18] Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. In Methods in Enzymology. 319:197–207 Academic Press. https://doi.org/10.1016/S0076-6879(00)19020-2.
  • Pemmada, R., Zhu, X., Dash, M., Zhou, Y., Ramakrishna, S., Peng, X., Thomas, V., Jain, S., & Nanda, H. S. (2020). Science-Based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials, 13(18), 4041. https://doi.org/10.3390/ma13184041
  • Peng, L., Guo, R., Lan, J., Jiang, S., Wang, X., Lin, S., & Li, C. (2018). Silver nanoparticles coating on silk fabric with pretreatment of 3-aminopropyltrimethoxysilane in supercritical carbon dioxide. Journal of Industrial Textiles, 47(5), 883–896. https://doi.org/10.1177/1528083716676813
  • Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-NCoV and controls in dental practice. International Journal of Oral Science, 12(1), 9. https://doi.org/10.1038/s41368-020-0075-9
  • Perelshtein, I., Applerot, G., Perkas, N., Guibert, G., Mikhailov, S., & Gedanken, A. (2008). Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology, 19(24), 245705. https://doi.org/10.1088/0957-4484/19/24/245705
  • Perera, S., Bhushan, B., Bandara, R., Rajapakse, G., Rajapakse, S., & Bandara, C. (2013, September). Morphological, ANTIMICROBIAL, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 975–989. https://doi.org/10.1016/j.colsurfa.2013.08.038
  • Plotnikov, E., Silnikov, V., Gapeyev, A., & Plotnikov, V. (2016). Investigation of DNA-damage and chromosomal aberrations in blood cells under the influence of new silver-based antiviral complex. Advanced Pharmaceutical Bulletin, 6(1), 71–74. https://doi.org/10.15171/apb.2016.011
  • Policy, Board on Health Sciences, and Institute of Medicine. (2015). Why, where, and how PAPRs are being used in health care. the use and effectiveness of powered air purifying respirators in health care: workshop summary. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK294225/.
  • Prather, K. A., Wang, C. C., & Schooley, R. T. (2020). Reducing transmission of SARS-CoV-2. Science (New York, N.Y.), 368(6498), 1422–1424. https://doi.org/10.1126/science.abc6197
  • Pulidindi, K., Pandey, H. (2020). Antimicrobial market. Global Market Insights, Inc. April 2020. https://www.gminsights.com/industry-analysis/antimicrobial-textiles-market.
  • Quadros, M. E., & Marr, L. C. (2010). Environmental and human health risks of aerosolized silver nanoparticles. Journal of the Air & Waste Management Association (1995), 60(7), 770–781. https://doi.org/10.3155/1047-3289.60.7.770
  • Raffi, M., Hussain, F., & Hussain Raffi, F. M. (2009). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Sciences and Technology, 24(02), 192–196. https://www.jmst.org/EN/abstract/abstract8045.shtml.
  • Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112(5), 841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
  • Rana, M., Hao, B., Mu, L., Chen, L., & Ma, P.-C. (2016, January). Development of Multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Composites Science and Technology, 122, 104–112. https://doi.org/10.1016/j.compscitech.2015.11.016
  • Raza, Z. A. (2018). In situ synthesis and immobilization of nanosilver on knitted cellulose fabric. Journal of Natural Fibers, 15(2), 183–190. https://doi.org/10.1080/15440478.2017.1321517
  • Robson, B. (2020, April). Computers and viral diseases. preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-NCoV, COVID-19) coronavirus. Computers in Biology and Medicine, 119, 103670. https://doi.org/10.1016/j.compbiomed.2020.103670
  • Sahu, S. C., & Casciano, D. A. (2009). Nanotoxicity: From in vivo and in vitro models to health risks. John Wiley & Sons.
  • Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The Potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8), 1566. https://doi.org/10.3390/nano10081566
  • Sasaki, K., Tenjimbayashi, M., Manabe, K., & Shiratori, S. (2016). Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces, 8(1), 651–659. https://doi.org/10.1021/acsami.5b09782
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
  • Seino, S., Imoto, Y., Kosaka, T., Nishida, T., Nakagawa, T., & Yamamoto, T. A. (2016). Antiviral activity of silver nanoparticles immobilized onto textile fabrics synthesized by radiochemical process. MRS Advances, 1(11), 705–710. https://doi.org/10.1557/adv.2016.43
  • Shahidi, S., Rashidian, M., & Dorranian, D. (2018, February). Preparation of antibacterial textile using laser ablation method. Optics & Laser Technology, 99, 145–153. https://doi.org/10.1016/j.optlastec.2017.08.025
  • Shahidi, S., Rezaee, H., Rashidi, A., & Ghoranneviss, M. (2018). In situ synthesis of ZnO nanoparticles on plasma treated cotton fabric utilizing durable antibacterial activity. Journal of Natural Fibers, 15(5), 639–647. https://doi.org/10.1080/15440478.2017.1349714
  • Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Parkash Yadav, J., & Kaushik, S. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied Microbiology and Biotechnology, 103(2), 881–891. https://doi.org/10.1007/s00253-018-9488-1
  • Sivaranjana, P., Nagarajan, E. R., Rajini, N., Ayrilmis, N., Rajulu, A. V., & Siengchin, S. (2021). Preparation and characterization studies of modified cellulosic textile fabric composite with in situ-generated AgNPs coating. Journal of Industrial Textiles, 50(7), 1111–1126. https://doi.org/10.1177/1528083719855312
  • Soenen, S. J., Rivera-Gil, P., Montenegro, J.-M., Parak, W. J., De Smedt, S. C., & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today., 6(5), 446–465. https://doi.org/10.1016/j.nantod.2011.08.001
  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A Case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012
  • Sood, R., & Chopra, D. S. (2018). Regulatory approval of silver nanoparticles. Applied Clinical Research, Clinical Trials and Regulatory Affairs, 5(2), 74–79. https://doi.org/10.2174/2213476X05666180614121601
  • Soto, D., Moreno, W. D., Cardona Maya, E., Londoño Agudelo, J. C. & Bueno-Sánchez, (2021). The feasibility of generalized face mask usage during the COVID-19 pandemic: A perspective from Latin America. Infection Control and Hospital Epidemiology, 42(2), 245–246. https://doi.org/10.1017/ice.2020.227
  • Speshock, J. L., Murdock, R. C., Braydich-Stolle, L. K., Schrand, A. M., & Hussain, S. M. (2010). Interaction of Silver nanoparticles with tacaribe virus. Journal of Nanobiotechnology, 8(1), 19. https://doi.org/10.1186/1477-3155-8-19
  • Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686. https://doi.org/10.1021/la0202374
  • Sutherland, W. J., Clout, M., Côté, I. M., Daszak, P., Depledge, M. H., Fellman, L., Fleishman, E., Garthwaite, R., Gibbons, D. W., De Lurio, J., Impey, A. J., Lickorish, F., Lindenmayer, D., Madgwick, J., Margerison, C., Maynard, T., Peck, L. S., Pretty, J., Prior, S., … Watkinson, A. R. (2010). A horizon scan of global conservation issues for 2010. Trends in Ecology & Evolution, 25(1), 1–7. https://doi.org/10.1016/j.tree.2009.10.003
  • Taglietti, A., Arciola, C. R., D'Agostino, A., Dacarro, G., Montanaro, L., Campoccia, D., Cucca, L., Vercellino, M., Poggi, A., Pallavicini, P., & Visai, L. (2014). Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials, 35(6), 1779–1788. https://doi.org/10.1016/j.biomaterials.2013.11.047
  • Talebian, S., Wallace, G. G., Schroeder, A., Stellacci, F., & Conde, J. (2020). Nanotechnology-Based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15(8), 618–621. https://doi.org/10.1038/s41565-020-0751-0
  • Tang, J. W., Li, Y., Eames, I., Chan, P. K. S., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. The Journal of Hospital Infection, 64(2), 100–114. https://doi.org/10.1016/j.jhin.2006.05.022
  • Torkelson, A. A., da Silva, A. K., Love, D. C., Kim, J. Y., Alper, J. P., Coox, B., Dahm, J., Kozodoy, P., Maboudian, R., & Nelson, K. L. (2012). Investigation of quaternary ammonium Silane-coated sand filter for the removal of bacteria and viruses from drinking water. Journal of Applied Microbiology, 113(5), 1196–1207. https://doi.org/10.1111/j.1365-2672.2012.05411.x
  • Trefry, J. C., Monahan, J. L., Weaver, K. M., Meyerhoefer, A. J., Markopolous, M. M., Arnold, Z. S., Wooley, D. P., & Pavel, I. E. (2010). Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors. Journal of the American Chemical Society, 132(32), 10970–10972. https://doi.org/10.1021/ja103809c
  • Trefry, J. C., & Wooley, D. P. (2013). Silver nanoparticles inhibit Vaccinia Virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. Journal of Biomedical Nanotechnology, 9(9), 1624–1635. https://doi.org/10.1166/jbn.2013.1659
  • Troynikov, O., Nawaz, N., & Watson, C. (2014). Medical protective clothing. In Protective Clothing (pp. 192–224). Elsevier. https://doi.org/10.1533/9781782420408.1.192.
  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11(0), 55–75. https://doi.org/10.1039/df9511100055
  • Türler, E., Türler, A., Ladurner, T., Hirner, A., & Engels, H. (2000). Operationskittel und Patientenabdeckungen im klinischen Alltag: Diskrepanz zwischen Anforderungen und Realität. Der Chirurg, 71(11), 1409–1415. https://doi.org/10.1007/s001040051236.
  • Uğur, S. S., Sarıışık, M., Aktaş, A. H., Uçar, M. C., & Erden, E. (2010). Modifying of cotton fabric surface with Nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Research Letters, 5(7), 1204–1210. https://doi.org/10.1007/s11671-010-9627-9
  • Valdez-Salas, B., Beltran-Partida, E., Cheng, N., Salvador-Carlos, J., Valdez-Salas, E. A., Curiel-Alvarez, M., & Ibarra-Wiley, R. (2021, April). Promotion of surgical masks antimicrobial activity by disinfection and impregnation with disinfectant silver nanoparticles. International Journal of Nanomedicine, 16, 2689–2702. https://doi.org/10.2147/IJN.S301212
  • Viscusi, D. J., Bergman, M. S., Eimer, B. C., & Shaffer, R. E. (2009). Evaluation of five decontamination methods for filtering facepiece respirators. The Annals of Occupational Hygiene, 53(8), 815–827. https://doi.org/10.1093/annhyg/mep070
  • Walls, A. C., Park, Y.-J., Alejandra Tortorici, M., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wan, Y., Guo, Z., Jiang, X., Fang, K., Lu, X., Zhang, Y., & Gu, N. (2013, March). Quasi-Spherical silver nanoparticles: aqueous synthesis and size control by the seed-mediated Lee-Meisel method. Journal of Colloid and Interface Science, 394, 263–268. . https://doi.org/10.1016/j.jcis.2012.12.037
  • Wang, J., Shen, J., Ye, D., Yan, X., Zhang, Y., Yang, W., Li, X., Wang, J., Zhang, L., & Pan, L. (2020, July). Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus disease 2019 (COVID-19) pandemic in China. Environmental Pollution (Barking, Essex : 1987), 262, 114665. https://doi.org/10.1016/j.envpol.2020.114665
  • Wang, X., Xia, S., Wang, Q., Xu, W., Li, W., Lu, L., & Jiang, S. (2020). Broad-Spectrum coronavirus fusion inhibitors to combat COVID-19 and other emerging coronavirus diseases. International Journal of Molecular Sciences, 21(11), 3843. https://doi.org/10.3390/ijms21113843
  • Wax, R. S., & Christian, M. D. (2020). Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-NCoV) patients. Canadian Journal of Anaesthesia = Journal canadien d'anesthesie, 67(5), 568–576. https://doi.org/10.1007/s12630-020-01591-x
  • Wiley, D. C., & Skehel, J. J. (1987). The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual Review of Biochemistry, 56, 365–394. https://doi.org/10.1146/annurev.bi.56.070187.002053
  • Windler, L., Height, M., & Nowack, B. (2013, March). Comparative evaluation of antimicrobials for textile applications. Environment International, 53, 62–73. https://doi.org/10.1016/j.envint.2012.12.010
  • Xiang, D., Zheng, C-l., Zheng, Y., Li, X., Yin, J., O’ Conner, M., Marappan, M., Miao, Y., Xiang, B., Duan, W., Shigdar, S., & Zhao, X. (2013, October). Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International Journal of Nanomedicine, 8(1), 4103. https://doi.org/10.2147/IJN.S53622
  • Xia, S., Yan, L., Xu, W., Agrawal, A. S., Algaissi, A., Tseng, C.-T K., Wang, Q., Du, L., Tan, W., Wilson, I. A., Jiang, S., Yang, B., & Lu, L. (2019). A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Science Advances, 5(4), eaav4580. https://doi.org/10.1126/sciadv.aav4580
  • Xia, S., Zhu, Y., Liu, M., Lan, Q., Xu, W., Wu, Y., Ying, T., Liu, S., Shi, Z., Jiang, S., & Lu, L. (2020). Fusion mechanism of 2019-NCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol, 17(7), 765–767. https://doi.org/10.1038/s41423-020-0374-2
  • Xing, H., Cheng, J., Tan, X., Zhou, C., Fang, L., & Lin, J. (2020). Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–Ag complex. The Journal of the Textile Institute, 111(6), 855–861. https://doi.org/10.1080/00405000.2019.1668137
  • Xu, Q. B., Ke, X., Shen, L. W., Ge, N. Q., Zhang, Y. Y., Fu, F. Y., & Liu, X. (2018, May). Surface modification by carboxymethy Chitosan via pad-dry-cure method for Binding Ag NPs onto cotton fabric. International Journal of Biological Macromolecules, 111, 796–803. https://doi.org/10.1016/j.ijbiomac.2018.01.091
  • Yamamoto, M., & Nakamoto, M. (2003). New type of monodispersed gold nanoparticles capped by myristate and PPh3 ligands prepared by controlled thermolysis of [Au(C13H27COO)(PPh3)]. Chemistry Letters, 32(5), 452–453. https://doi.org/10.1246/cl.2003.452
  • Yang, X. X., Li, C. M., & Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 8(5), 3040–3048. https://doi.org/10.1039/c5nr07918g
  • Yang, L., Liu, H., Ding, S., Wu, J., Zhang, Y., Wang, Z., Wei, L., Tian, M., & Tao, G. (2020). Superabsorbent fibers for comfortable disposable medical protective clothing. Advanced Fiber Materials, 2(3), 140–149. https://doi.org/10.1007/s42765-020-00044-w
  • Yin, Y., Li, Z.-Y., Zhong, Z., Gates, B., Xia, Y., & Venkateswaran, S. (2002). Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens processelectronic supplementary information (ESI) available: Photographs of silver mirror, and of stable dispersions of silver nanoparticles from mixing diluted silvering solutions under sonication at various times. Journal of Materials Chemistry, 12(3), 522–527. https://doi.org/10.1039/b107469e
  • Zhang, D., Chen, L., Zang, C., Chen, Y., & Lin, H. (2013). Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydrate Polymers, 92(2), 2088–2094. https://doi.org/10.1016/j.carbpol.2012.11.100
  • Zhang, F., Wu, X., Chen, Y., & Lin, H. (2009). Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers and Polymers, 10(4), 496–501. https://doi.org/10.1007/s12221-009-0496-8
  • Zhao, P., Ke, J.-S., Qin, Z.-L., Ren, H., Zhao, L.-J., Yu, J.-G., Gao, J., Zhu, S.-Y., & Qi, Z.-T. (2004). DNA vaccine of SARS-Cov S gene induces antibody response in mice. Acta Biochimica et Biophysica Sinica, 36(1), 37–41. https://doi.org/10.1093/abbs/36.1.37
  • Zhou, J., Hu, Z., Zabihi, F., Chen, Z., & Zhu, M. (2020). Progress and perspective of antiviral protective material. Advanced Fiber Materials, 2(3), 123–139. https://doi.org/10.1007/s42765-020-00047-7
  • Zhou, Q., Lv, J., Ren, Y., Chen, J., Gao, D., Lu, Z., & Wang, C. (2017). A green in situ synthesis of silver nanoparticles on cotton fabrics using Aloe Vera leaf extraction for durable ultraviolet protection and antibacterial activity. Textile Research Journal, 87(19), 2407–2419. https://doi.org/10.1177/0040517516671124
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
  • Zhuang, X., Cheng, B., Kang, W., & Xu, X. (2010). Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydrate Polymers, 82(2), 524–527. https://doi.org/10.1016/j.carbpol.2010.04.085
  • Zwolińska, M., & Bogdan, A. (2012). Impact of the medical clothing on the thermal stress of surgeons. Applied Ergonomics, 43(6), 1096–1104. https://doi.org/10.1016/j.apergo.2012.03.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.