625
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Spectral simulation and method design of camouflage textiles for concealment of hyperspectral imaging in UV-Vis-IR against multidimensional combat background

Pages 331-342 | Received 26 Jul 2021, Accepted 05 Jan 2022, Published online: 22 Jan 2022

References

  • Anderson, C. A., Drennen, J. K., & Ciurczak, E. W. (2008). Pharmaceutical applications of near-infrared spectroscopy. In Handbook of near-infrared analysis. E. W Ciurczak, Editors. CRC Press, Taylor and Francis Group. pp. 585–606.
  • Andersson, K. (2018). On the military utility of spectral design in signature management: A systems approach, in military science [Ph. D Thesis]. Doctor of Military Sciences, National Defence University, Finland; Swedish Defence University. Drottning Kristinas väg 37.
  • Badaro, A. T. (2020). Determination of pectin content in orange peels by near infrared hyperspectral imaging. Food Chemistry, 323, 126861.
  • Berns, R. S. (2019). Billmeyer and Saltzman's principles of color technology. John Wiley & Sons. p. 37–50.
  • Borengasser, M., et al. (2007). History and description of hyperspectral imaging. in Hyperspectral remote sensing: Principles and applications. Taylor & Francis Group. p. 1–6.
  • Casey, H. C., Sell, D. D., & Panish, M. B. (1974). Refractive index of AlxGa1 − xAs between 1.2 and 1.8 eV. Applied Physics Letters, 24(2), 63–65. https://doi.org/10.1063/1.1655095
  • Chen, S., Li, X., & Zhao, L. (2017). Subpixel mapping method of hyperspectral images based on modified binary quantum particle swarm optimization. Journal of Electrical and Computer Engineering, 2017, 1–17.
  • Chevali, V., & Kandare, E. (2016). Rigid biofoam composites as eco-efficient construction materials. Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, 275–304.
  • Chuang, Y.-C. (2015). Spectral power distribution. In Encyclopedia of color science and technology. R. Luo, Editor. Springer Science + Business Media. 2015. p. 1–4.
  • Cozzolino, D. (2014). Use of infrared spectroscopy for in-field measurement and phenotyping of plant properties: Instrumentation, data analysis, and examples. Applied Spectroscopy Reviews, 49(7), 564–584. https://doi.org/10.1080/05704928.2013.878720
  • Dararutana, P., Pongkrapan, S., Sirikulrat, N., Thawornmongkolkij, M., & Wathanakul, P. (2009). Raman spectroscopic investigation on high refractive index glasses prepared from local quartz sand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(3), 440–442. https://doi.org/10.1016/j.saa.2008.10.036
  • Dong, X., Yetisen, A. K., Tian, H., Güler, İ., Stier, A. V., Li, Z., Köhler, M. H., Dong, J., Jakobi, M., Finley, J. J., & Koch, A. W. (2020). Line-scan hyperspectral imaging microscopy with linear unmixing for automated two-dimensional crystals identification. ACS Photonics., 7(5), 1216–1225. https://doi.org/10.1021/acsphotonics.0c00050
  • Dulski, R. (2007). Analysis of a thermal scene using computer simulations. Infrared Physics & Technology, 49(3), 257–260.
  • Durmus, D. (2000). Optimising light source spectrum to reduce the energy absorbed by objects. School of Architecture, Design and Planning. 2018 [Ph. D Thesis]. The University of Sydney, pp. 173–175.
  • Field, L. D., Sternhell, S., & Kalman, J. R. (2007). Organic structures from spectra. 4th ed. John Willey and Sons Ltd.
  • Fu, J. (2010). Hyperspectral image analysis using artificial color. Journal of Applied Remote Sensing, 4(043514), 1–16.
  • Garside, P. (2002). Investigation of anlytical techniques for the characterisation of natural textile fibres towards informed conservation. Department of Chemistry [Ph.D Thesis]. University of Southampton, Southampton SO17 1BJ, UK.
  • Gillard, R. D. (1994). The detection of dyes by FTIRS microscopy. Taylor and Francis Ltd, 39, 187–192.
  • Goldberg, A. C., Stann, B., (2003). Multispectral, hyperspectral, and three-dimensional imaging research at the U.S. Army Research Laboratory. [Paper presentation]. Proceedings of the International Conference on International Fusion [6th], and N. Gupta, Cairns, Queensland, Australia.
  • Gosse, S., Labrie, D., & Chylek, P. (1995). Refractive index of ice in the 1.4-7.8-µm spectral range . Applied Optics, 34(28), 6582–6586. https://doi.org/10.1364/AO.34.006582
  • Grahn, H. F., & Geladi, P. (2007). Clustering and classification in multispectral imaging for quality inspection of postharvest products. In Techniques and applications of hyperspectral image analysis. John Wiley & Sons Ltd. The Atrium. pp. 43–60.
  • Haba, M-JDl. (2013). Texture prediction in intact green asparagus by near infrared (NIR) spectroscopy, assaying linear and non-linear regression strategies. Food Analytical Methods, 7(3), 606–615.
  • Heist, S., Zhang, C., Reichwald, K., Kühmstedt, P., Notni, G., & Tünnermann, A. (2018). 5D hyperspectral imaging: Fast and accurate measurement of surface shape and spectral characteristics using structured light. Optics Express, 26(18), 23366–23379. https://doi.org/10.1364/OE.26.023366
  • Holser, R. A. (2014). Near-infrared analysis of peanut seed skins for catechins. American Journal of Analytical Chemistry, 05(06), 378–383. https://doi.org/10.4236/ajac.2014.56046
  • Jacquemoud, S., & Baret, F. (1990). Prospect: A model of leaf optical properties spectra. Remote Sensing of Environment , 34(2), 75–79. https://doi.org/10.1016/0034-4257(90)90100-Z
  • Jellison, G. E., & Burke, H. H. (1986). The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. Journal of Applied Physics, 60(2), 841–843. https://doi.org/10.1063/1.337386
  • Jenerowicz (2019)., The methodology of the evaluation of the usefulness of camouflage fabric deteriorated over time using hyperspectral imagery. in Proceeding of SPIE, Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies III. pp. 1116607–6.
  • Jianxin, Z. (2020). Multi-color measurement of printed fabric using the hyperspectral imaging system. Textile Research Journal, 90(9-10), 1024–1037.
  • Jianxin, Z., Kangping, Z., Junkai, W., & Xudong, H. (2021). Color segmentation and extraction of yarn-dyed fabric based on a hyperspectral imaging system. Textile Research Journal, 91(7-8), 729–742. https://doi.org/10.1177/0040517520957401
  • Kerekes, J. P., & Baum, J. E. (2003). Hyperspectral imaging system modeling. Lincoln Laboratory Journal, 14(1), 117–130.
  • Khan, M. J., Khan, H. S., Yousaf, A., Khurshid, K., & Abbas, A. (2018). Modern trends in hyperspectral image analysis: A review. IEEE Access, 6, 14118–14129. https://doi.org/10.1109/ACCESS.2018.2812999
  • Khopker, S. M. (2004). Introduction to analytical chemistry, in Basic concepts of analytical chemistry. New Age International (P) Limited, 4835/24. p. 1–15.
  • Kusaka, T., Kodama, M., Shibata, H. (2000). Extraction of the distribution of yellow sand dust and its optical properties from ADEOS/POLDER data. International Archives of Photogrammetry and Remote Sensing, XXXIII.
  • Lafferrman, F. L. (1976). Spectral reflectance evaluation of camouflage detection photography. J. York, Editor. U.S. Army mobility equipment research and development command fort Belvoir.
  • Leong, H. C. (2007). Imaging and reflectance spectroscopy for the evaluation of effective camouflage in the SWIR [Thesis, Master of science in combat systems sciences and technology]. Naval postgraduate school.
  • Loebich, O. (1972). The optical properties of gold, a review of their technical utilization. Metal department. DEGUSSA. p. 2–10.
  • Lowe, A., Harrison, N., & French, A. P. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 13, 80. https://doi.org/10.1186/s13007-017-0233-z
  • Manley, M. (2014). Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chemical Society Reviews, 43(24), 8200–8214. https://doi.org/10.1039/C4CS00062E
  • Manna, B. (2018). Hyperspectral signature analysis using neural network for grade estimation of copper ore. IOP Conf. Series: Earth and Environmental Science, 169, 1–9.
  • Needham, G. H. (1924). Styrax and its refractive Index. Nature, 113(2848), 785–786. https://doi.org/10.1038/113785c0
  • Ng, C. L. (2007). Applications of Infrared Spectroscopy to Agricultural and Food Products, in Food Science and Technology [Ph.D Thesis]. University of Nebraska.
  • Noda, T. (1955). Synthetic mica research in Japan. Journal of the American Ceramic Society, 38(4), 147–152. https://doi.org/10.1111/j.1151-2916.1955.tb14919.x
  • Qin, J., Chao, K., Kim, M. S., Lu, R., & Burks, T. F. (2013). Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering, 118(2), 157–171. https://doi.org/10.1016/j.jfoodeng.2013.04.001
  • Ren, G., Wang, Y., Ning, J., & Zhang, Z. (2020). Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 237, 118407. https://doi.org/10.1016/j.saa.2020.118407
  • Russell, B. J., & Dierssen, H. M. (2015). Use of hyperspectral imagery to assess cryptic color matching in Sargassum associated crabs. PLOS One, 10(9), e0136260–26. https://doi.org/10.1371/journal.pone.0136260
  • Sadiku, M. N. O. (1985). Refractive index of snow at microwave frequencies. Applied Optics, 24(4), 572–575. https://doi.org/10.1364/ao.24.000572
  • Striova, J., Dal Fovo, A., & Fontana, R. (2020). Reflectance imaging spectroscopy in heritage science. La Rivista Del Nuovo Cimento, 43(10), 515–566. https://doi.org/10.1007/s40766-020-00011-6
  • Sturge, M. D. (1962). Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Physical Review, 127(3), 768–773. https://doi.org/10.1103/PhysRev.127.768
  • Sundaram, J., Mani, S., Kandala, C. V. K., & Holser, R. A. (2015). Application of NIR reflectance spectroscopy on rapid determination of moisture content of wood pellets. American Journal of Analytical Chemistry, 06(12), 923–932. https://doi.org/10.4236/ajac.2015.612088
  • Tian, J., Duan, Z., Ren, W., Han, Z., & Tang, Y. (2016). Simple and effective calculations about spectral power distributions of outdoor light sources for computer vision. Optics Express, 24(7), 7266–7286. https://doi.org/10.1364/OE.24.007266
  • Toet, A., & Hogervorst, M. A. (2021). Review of camouflage assessment techniques. In Target and background signatures VI. U. Stein and R. Schleijpen, Editors. pp. 1153604–1153629. https://doi.org/10.1117/12.2566183
  • Toledo-Martín, E., García-García, M., Font, R., Moreno-Rojas, J., Salinas-Navarro, M., Gómez, P., & del Río-Celestino, M. (2018). Quantification of total phenolic and carotenoid content in blackberries (Rubus fructicosus L.) using near infrared spectroscopy (NIRS) and multivariate analysis. Molecules, 23(12), 3191. https://doi.org/10.3390/molecules23123191
  • Williams, P. J., & Sendin, K. (2019). Fundamentals. In Hyperspectral imaging analysis and applications for food quality. N.C. Basantia, L.M.L. Nollet, and M. Kamruzzaman, Editors. CRC Press, Taylor and Francis. pp. 1–14.
  • Wang, Q., Wu, C., Li, Q., & Li, J. (2010). Chinese HJ-1A/B satellites and data characteristics. Science China Earth Sciences, 53(S1), 51–57. https://doi.org/10.1007/s11430-010-4139-0
  • Weyer (2012). Water. In Practical guide and spectral atlas for interpretive near-infrared spectroscopy. Taylor & Francis Group. pp. 56–60.
  • Weyer (2012). Alkanes and cycloalkanes. In Practical guide and spectral atlas for interpretive near-infrared spectroscopy. Taylor & Francis Group. p. 20–31.
  • Weyer (2012). Introduction to near-infrared spectra. In Practical guide and spectral atlas for interpretive near-infrared spectroscopy. Taylor and Francis Group. pp. 1–16.
  • Willoughby, C. T., Folkman, M. A., Figueroa, M. A. (1996). Application of hyperspectral imaging spectrometer systems to industrial inspection. In Proceeding of SPIE, three-dimensional and unconventional imaging for industrial inspection and metrology.
  • Winkelmann, M. (2015). Analysis of exploitable spectral features of target and background materials. In Target and background signatures. Proceeding of SPIE. p. 96530L-7.
  • Winkelmann, M. (2017). Spectral characterization of natural backgrounds. In Target and background signatures III. Poland. pp. 1043202–1043210.
  • Wooley, J. T. (1975). Refractive index of soybean leaf cell walls. Plant Physiology., 55, 172–174.
  • Xu, J., Qian, W., & Chen, Q. (2018). Calculation model of scattering depolarization for camouflaged target detection system. Optik, 158, 341–348. https://doi.org/10.1016/j.ijleo.2017.12.115
  • Xu, K., & Ye, H. (2020). Preparation and optimization of biomimetic materials simulating solar spectrum reflection characteristics of natural leaves. Journal of Materials Science, 55(27), 12848–12863. https://doi.org/10.1007/s10853-020-04942-7
  • Yamasoe, M. A., Kaufman, Y. J., Dubovik, O., Remer, L. A., Holben, B. N., & Artaxo, P. (1998). Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR-B. Journal of Geophysical Research: Atmospheres, 103(D24), 31893–31902. https://doi.org/10.1029/98JD01211
  • Yuen, P. W., & Richardson, M. (2010). An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. The Imaging Science Journal, 58(5), 241–253. https://doi.org/10.1179/174313110X12771950995716
  • Zhou, P-c. (2011). Camouflaged target detection based on visible and near infrared polarimetric imagery fusion. In Proceeding SPIE, International Symposium on Photoelectronic Detection and Imaging. Advances in Imaging Detectors and Applications. 2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.