182
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the effect of interlaced yarn structures on bending properties of textile reinforced cement composite with cold plasma treated polypropylene fabric

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 601-612 | Received 08 Sep 2021, Accepted 15 Mar 2022, Published online: 29 Mar 2022

References

  • Afrashteh, S., & Eskandarnejad, S. (2013). Effect of geometrical parameters of the yarn channel in an intermingling jet on nip structure and stability of textured yarn. Journal of Textile Science and Technology, 2(4), 195–200.
  • Bekeschus, S., Lippert, M., Diepold, K., Chiosis, G., Seufferlein, T., & Azoitei, N. (2019). Physical plasma-triggered ROS induces tumor cell death upon cleavage of HSP90 chaperone. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-38580-0
  • Bhattacharya, S. S., Dighe, S., & Malek, U. A. (2005). Effect of extra feed roller of textured intermingled yarn properties. Man-Made Textiles in India, 48(5).
  • Feldman, D., Denes, F., Zeng, Z., Denes, A. R., & Banu, D. (2000). Polypropylene fiber–matrix bonds in cementitious composites. Journal of Adhesion Science and Technology, 14(13), 1705–1721. https://doi.org/10.1163/156856100742500
  • Felekoglu, B., Tosun, K., & Baradan, B. (2009). A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites. Journal of Materials Processing Technology, 209(11), 5133–5144. https://doi.org/10.1016/j.jmatprotec.2009.02.015
  • Feng, G., Wang, X., Zhang, D., Cao, H., Qian, K., & Xiao, X. (2017). A comparative study on mechanical properties of surface modified polypropylene (PP) fabric reinforced concrete composites. Construction and Building Materials, 157, 372–381. https://doi.org/10.1016/j.conbuildmat.2017.08.004
  • Gardiner, T., & Currie, B. (1983). Flexural behaviour of composite cement sheets using woven polypropylene mesh fabrics. International Journal of Cement Composites and Lightweight Concrete, 5(3), 193–197. https://doi.org/10.1016/0262-5075(83)90006-4
  • Gomathi, N., & Neogi, S. (2009). Surface modification of polypropylene using argon plasma: Statistical optimization of the process variables. Applied Surface Science, 255(17), 7590–7600. https://doi.org/10.1016/j.apsusc.2009.04.034
  • Grosberg, P., & Swani, N. M. (1966). The mechanical properties of woven fabrics: Part IV: The determination of the bending rigidity and frictional restraint in woven fabrics. Textile Research Journal, 36(4), 338–345. https://doi.org/10.1177/004051756603600406
  • Jeddi, A. A. A., Shams, S., Nosraty, H., & Sarsharzadeh, A. (2003). Relations between fabric structure and friction: Part I: Woven fabrics. Journal of the Textile Institute, 94(3–4), 223–234. https://doi.org/10.1080/00405000308630611
  • Kamali Dolatabadi, M., Janetzko, S., Gries, T., Kang, B., & Sander, A. (2011). Permeability of AR-glass fibers roving embedded in cementitious matrix. Materials and Structures, 44(1), 245–251. https://doi.org/10.1617/s11527-010-9623-7
  • Kamani, R., Kamali Dolatabadi, M., Jeddi, A. A. A., & Nasrollahzadeh, K. (2018). Damage detection of carbon fiber-reinforced concrete under bending test. Journal of Textiles and Polymers, 6(1), 39–46.
  • Keil, A., Cuypers, H., Raupach, M., & Wastiels, J. (2008). Study of the bond in textile reinforced concrete: Influence of matrix and interface modification. Challenges for Civil Constructions. Pro International Con Faculdade de Enghenharia da Universidade do Porto. 1–11.
  • Kwon, O. J., Tang, S., Myung, S. W., Lu, N., & Choi, H. S. (2005). Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surface and Coatings Technology, 192(1), 1–10. https://doi.org/10.1016/j.surfcoat.2004.09.018
  • Lopez-Buendia, A. M., Romero-Sanchez, M. D., Climent, V., & Guillem, C. (2013). Surface treated polypropylene (PP) fibres for reinforced concrete. Cement and Concrete Research, 54, 29–35. https://doi.org/10.1016/j.cemconres.2013.08.004
  • Miao, M., & Soong, M. C. (1995). Air interlaced yarn structure and properties. Textile Research Journal, 65(8), 433–440. https://doi.org/10.1177/004051759506500801
  • Mobasher, B. (2011). Mechanics of fiber and textile reinforced cement composites (pp. 30–32). CRC Press.
  • Mortazavi, S., Ghoranneviss, M., Pilehvar, S., Esmaeili, S., Zargham, S., Hashemi, S., & Jodat, H. (2013). Effect of low-pressure nitrogen DC plasma treatment on the surface properties of biaxially oriented polypropylene, poly (methyl methacrylate) and polyvinyl chloride films. Plasma Science and Technology, 15(4), 362–367. https://doi.org/10.1088/1009-0630/15/4/10
  • Pakravan, H., Jamshidi, M., Latifi, M., & Neshastehriz, M. (2011). Application of polypropylene nonwoven fabrics for cement composites reinforcement. Asian Journal of Civil Engineering (Building and Housing), 12(5), 551–562.
  • Peled, A., & Bentur, A. (2003). Fabric structure and its reinforcing efficiency in textile reinforced cement composites. Composites Part A: Applied Science and Manufacturing, 34(2), 107–118. https://doi.org/10.1016/S1359-835X(03)00003-4
  • Peled, A., Bentur, A., & Yankelevsky, D. (1999). Flexural performance of cementitious composites reinforced with woven fabrics. Journal of Materials in Civil Engineering, 11(4), 325–330. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(325)
  • Peled, A., Guttman, H., & Bentur, A. (1992). Treatments of polypropylene fibers to optimize their reinforcing efficiency in cement composites. Cement and Concrete Composites, 14(4), 277–285. https://doi.org/10.1016/0958-9465(92)90026-R
  • Peled, A., & Mobasher, B. (2006). Properties of fabric–cement composites made by pultrusion. Materials and Structures, 39(8), 787–797. https://doi.org/10.1617/s11527-006-9171-3
  • Peled, A., Sueki, S., & Mobasher, B. (2006). Bonding in fabric-cement systems: Effects of fabrication methods. Cement and Concrete Research, 36(9), 1661–1671. https://doi.org/10.1016/j.cemconres.2006.05.009
  • Shishoo, R. (2007). Plasma technologies for textiles. Woodhead Publishing Limited. Wood-head Textiles Series No. 62. eBook ISBN: 9781845692575
  • Slepička, P., Vasina, A., Kolská, Z., Luxbacher, T., Malinský, P., Macková, A., & Švorčík, V. (2010). Argon plasma irradiation of polypropylene. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11–12), 2111–2114. https://doi.org/10.1016/j.nimb.2010.02.012
  • Sukontasukkul, P. (2004). Toughness evaluation of steel and polypropylene fiber reinforced concrete beams under bending. Science and Technology Asia Journal, 9(3), 35–41.
  • Tosun, K., Felekoğlu, B., & Baradan, B. (2012). Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading. Cement and Concrete Composites, 34(4), 508–520. https://doi.org/10.1016/j.cemconcomp.2011.12.001
  • Varsei, M., Shaikhzadeh Najar, S., Hosseini, M., & Seyed Razzaghi, M. (2013). Bending properties of fine grained concrete composite beams reinforced with single-layer carbon/polypropylene woven fabrics with different weave designs and thread densities. Journal of the Textile Institute, 104(11), 1213–1220. https://doi.org/10.1080/00405000.2013.787269
  • Wang, W., Wang, L., Shi, Q., Yu, H., Chen, T., Wang, C., & Sun, T. (2006). Progress of the surface modification of PP fiber used in concrete. Polymer-Plastics Technology and Engineering, 45(1), 29–34. https://doi.org/10.1080/03602550500371612
  • Wang, Y., & Zhao, D. (2006). Effect of fabric structures on the mechanical properties of 3-D textile composites. Journal of Industrial Textiles, 35(3), 239–256. https://doi.org/10.1177/1528083706057595
  • Weon, J. I., & Choi, K. Y. (2009). Surface characterization and morphology in Ar-plasma-treated polypropylene blend. Macromolecular Research, 17(11), 886–893. https://doi.org/10.1007/BF03218631
  • Xu, S., & Yin, S. (2010). Analytical theory of flexural behavior of concrete beam reinforced with textile-combined steel. Science China Technological Sciences, 53(6), 1700–1710. https://doi.org/10.1007/s11431-010-3063-z
  • Yüksekkaya, M., & Öztanır, İ. (2014). The effect of intermingling process parameters on the synthetic filament yarn strength. Tekstil ve Mühendis, 21(93), 10–17. https://doi.org/10.7216/130075992014219302

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.