156
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Surface carboxylation of hydrophobic synthetic fibers for enhancing deposition of reduced graphene oxide to create highly conductive and bactericidal textiles

ORCID Icon, &
Pages 1135-1145 | Received 16 Feb 2022, Accepted 22 Jul 2022, Published online: 08 Aug 2022

References

  • Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. https://doi.org/10.1021/nn101390x
  • Berendjchi, A., Khajavi, R., Yousefi, A. A., & Yazdanshenas, M. E. (2016). Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate. Applied Surface Science,.363, 264–272. https://doi.org/10.1016/j.apsusc.2015.12.030
  • Bhargava, S., Koratkar, N., & Blanchet, T. A. (2015). Effect of platelet thickness on wear of graphen-polytetrafluoroethylene (PTFE) composites. Tribology Letters, 59(1), 17–29. https://doi.org/10.1007/s11249-015-0533-2
  • Brown, E. N., & Dattelbaum, D. M. (2005). The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer, 46(9), 3056–3068. https://doi.org/10.1016/j.polymer.2005.01.061
  • Cao, J., & Wang, C. (2017). Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Applied Surface Science, 405, 380–388. https://doi.org/10.1016/j.apsusc.2017.02.017
  • Dong, Z., Jiang, C., Cheng, H., Zhao, Y., Shi, G., Jiang, L., & Qu, L. (2012). Facile fabrication of light, flexible and multifunctional graphene fibers. Advanced Materials (Deerfield Beach, Fla.), 24(14), 1856–1861. https://doi.org/10.1002/adma.201200170
  • Feng, L., & Liu, Z. (2011). Graphene in biomedicine: Opportunities and challenges. Nanomedicine (London, England), 6(2), 317–324. https://doi.org/10.2217/nnm.10.158
  • Ge, X., Li, H., & Wu, L. (2017). Improved mechanical and barrier properties of starch film with reduced graphene oxide modified by SDBS. Journal of Applied Polymer Science, 134, 44910–44918.
  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
  • Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., & Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, 4(7), 4317–4323. https://doi.org/10.1021/nn101097v
  • Jiang, Z., Zhao, X., Fu, Y., & Manthiram, A. (2012). Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. Journal of Materials Chemistry, 22(47), 24862–24869. https://doi.org/10.1039/c2jm35571j
  • Jung, I., Rhyee, J.-S., Son, J. Y., Ruoff, R. S., & Rhee, K.-Y. (2012). Colors of graphene and graphene-oxide multilayers on various substrates. Nanotechnology, 23(2), 025708–025716. https://doi.org/10.1088/0957-4484/23/2/025708
  • Krishnamoorthy, K., Navaneethaiyer, U., Mohan, R., Lee, J., & Kim, S.-J. (2012). Graphene oxide nanostructures modified multifunctional cotton fabrics. Applied Nanoscience, 2(2), 119–126. https://doi.org/10.1007/s13204-011-0045-9
  • Li, B., Dong, Y., & Ding, Z. (2013). Photoassisted degradation of CI Reactive Red 195 using an Fe(III)-grafted polytetrafluoroethylene fibre complex as a novel heterogeneous Fenton catalyst over a wide pH range. Coloration Technology, 129(6), 403–411. https://doi.org/10.1111/cote.12049
  • Li, B., Dong, Y., & Li, L. (2015). Preparation and catalytic performance of Fe(III)-citric acid-modified cotton fiber complex as a novel cellulose fiber-supported heterogeneous photo-Fenton catalyst. Cellulose, 22(2), 1295–1309. https://doi.org/10.1007/s10570-015-0562-x
  • Liu, W-W., Yan, X-B., Lang, J-W., Peng, C., & Xue, Q-j (2012). Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 22(33), 17245–17253.,. https://doi.org/10.1039/c2jm32659k
  • McIntyre, J. E. (2006). Synthetic fibers. China: Beijing,
  • Molina, J., Fernández, J., Fernandes, M., Souto, A. P., Esteves, M. F., Bonastre, J., & Cases, F. (2015). Plasma treatment of polyester fabrics to increase the adhesion of reduced graphene oxide. Synthetic Metals, 202, 110–122. https://doi.org/10.1016/j.synthmet.2015.01.023
  • Molina, J., Oliveira, F. R., Souto, A. P., Esteves, M. F., Bonastre, J., & Cases, F. (2013). Enhanced adhesion of polypyrrole/PW12O 403− hybrid coatings on polyester fabrics. Journal of Applied Polymer Science, 129(1), 422–433. https://doi.org/10.1002/app.38652
  • Perkins, W. S. (1996). Textile coloration and finishing. Textile Coloration & Finishing.
  • Pienaar, A. D., van Rooyen, L., Bissett, H., & Karger-Kocsis, J. (2017). Effect of graphene content on thermal degradation of PTFE. Brazilian Journal of Thermal Analysis, 6(2), 7–12. https://doi.org/10.18362/bjta.v6.i2.12
  • Prashant, S. K., Shagufta, U. P., & George, G. C. (2012). Layered hydrophilic/hydrophobic fiber media for water-in-oil coalescence. Separation and Purification Technology, 85, 157–164.
  • Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045
  • Rooyen, L. J., Bissett, H., & Khoathane, M. C. (2016). Preparation of PTFE/graphene nanocomposites by compression moulding and free sintering: A guideline. Journal of Applied Polymer Science, 133, 43369–43378.
  • Sahito, I. A., Sun, K. C., Arbab, A. A., Qadir, M. B., & Jeong, S. H. (2015). Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide. Carbohydrate Polymers, 130, 299–306. https://doi.org/10.1016/j.carbpol.2015.05.010
  • Saikhao, L., Setthayanond, J., Karpkird, T., & Suwanruji, P. (2017). Comparison of sodium dithionite and glucose as a reducing agent for natural indigo dyeing on cotton fabrics. MATEC Web of Conferences, 108, 03001. https://doi.org/10.1051/matecconf/201710803001
  • Seabra, A. B., Paula, A. J., de Lima, R., Alves, O. L., & Durán, N. (2014). Nanotoxicity of graphene and graphene oxide. Chemical Research in Toxicology, 27(2), 159–168. https://doi.org/10.1021/tx400385x
  • Shateri-Khalilabad, M., & Yazdanshenas, M. E. (2013a). Fabricating electroconductive cotton textiles using grapheme. Carbohydrate Polymers, 96(1), 190–195. https://doi.org/10.1016/j.carbpol.2013.03.052
  • Shateri-Khalilabad, M., & Yazdanshenas, M. E. (2013b). Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 20(2), 963–972. https://doi.org/10.1007/s10570-013-9873-y
  • Shen, W., Dong, Y., Cui, G., & Li, B. (2016). Optimized preparation of electrically conductive cotton fabric by an industrialized exhaustion dyeing with reduced graphene oxide. Cellulose, 23(5), 3291–3300. https://doi.org/10.1007/s10570-016-1006-y
  • Shirgholami, M. A., Karimi, L., & Mirjalili, M. (2016). Multifunctional modification of wool fabric using graphene/TiO2 nanocomposite. Fibers and Polymers, 17(2), 220–228. https://doi.org/10.1007/s12221-016-5838-8
  • Si, Y., & Samulski, E. T. (2008). Synthesis of water soluble graphene. Nano Letters, 8(6), 1679–1682. https://doi.org/10.1021/nl080604h
  • Soleimani-gorgani, A., & Karami, Z. (2016). The effect of biodegradable organic acids on the improvement of cotton ink-jet printing and antibacterial activity. Fibers and Polymers, 17(4), 512–520. https://doi.org/10.1007/s12221-016-5865-5
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034
  • Tang, H., Ehlert, G. J., Lin, Y., & Sodano, H. A. (2012). Highly efficient synthesis of graphene nanocomposites. Nano Letters, 12(1), 84–90. https://doi.org/10.1021/nl203023k
  • Xiong, C., & Yao, C. (2009). Preparation and application of acrylic acid grafted polytetrafluoroethylene fiber as a weak acid cation exchanger for adsorption of Er(III). Journal of Hazardous Materials, 170(2–3), 1125–1132. https://doi.org/10.1016/j.jhazmat.2009.05.089
  • Xu, X., Gong, J., Li, Z., Li, Q., Zhang, J., Wang, L., & Huang, J. (2020). Mordant free dyeing and functionalization of wool fabrics with biocolorants derived from Apocynum venetum L Bast. ACS Sustainable Chemistry & Engineering, 8(33), 12686–12695. https://doi.org/10.1021/acssuschemeng.0c04757
  • Zhang, Y.-Y., Ge, Q., Yang, L.-L., Shi, X.-J., Li, J.-J., Yang, D.-Q., & Sacher, E. (2015). Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores. Applied Surface Science, 339, 151–157. https://doi.org/10.1016/j.apsusc.2015.02.143
  • Zhang, M. C., Kang, E. T., Neoh, K. G., & Tan, K. L. (2000). Consecutive graft copolymerization of glycidyl methacrylate and aniline on poly(tetrafluoroethylene) films. Langmuir, 16(24), 9666–9672. https://doi.org/10.1021/la000568l
  • Zhang, Q., Zhang, S., Chen, S., Li, P., Qin, T., & Yuan, S. (2008). Preparation and characterization of a strong basic anion exchanger by radiation-induced grafting of styrene onto poly (tetrafluoroethylene) fiber. Journal of Colloid and Interface Science, 322(2), 421–428. https://doi.org/10.1016/j.jcis.2008.03.049
  • Zhu, C., Guo, S., Fang, Y., & Dong, S. (2010). Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4(4), 2429–2437. https://doi.org/10.1021/nn1002387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.