209
Views
1
CrossRef citations to date
0
Altmetric
ResearchArticle

Using various concentrations of SiO2 aerogel for oil wicking, spreading, and interception tests of 3D weft-knitted spacer fabrics

ORCID Icon, , , , , , ORCID Icon & show all
Pages 1146-1156 | Received 18 Mar 2022, Accepted 22 Jul 2022, Published online: 08 Aug 2022

References

  • Alassod, A., Tina, H., Islam, S. R., Huang, W., & Xu, G. (2021). Using polypropylene needle punch nonwoven sorbents as the interceptor for oil in static and dynamic water experiments. Environmental Technology, 1–16. https://doi.org/10.1080/09593330.2021.1937332
  • Anjum, A. S., Ali, M., Sun, K. C., Riaz, R., & Jeong, S. H. (2020). Self-assembled nanomanipulation of silica nanoparticles enable mechanochemically robust super hydrophobic and oleophilic textile. Journal of Colloid and Interface Science, 563, 62–73.
  • Arumugam, V., Mishra, R., Militky, J., & Salacova, J. (2017). Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. The Journal of the Textile Institute, 108(7), 1095–1105.
  • Asayesh, A., & Amini, M. (2021). Analysis of the Compression Performance of Weft-knitted Spacer Fabrics for Protective Applications in View of the Surface Layer Structure. Fibers and Polymers, 22(12), 3469–3478. https://doi.org/10.1007/s12221-021-0248-y
  • Bae, G. Y., Jang, J., Jeong, Y. G., Lyoo, W. S., & Min, B. G. (2010). Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups. Journal of Colloid and Interface Science, 344(2), 584–587.
  • Bandura, L., Woszuk, A., Kołodyńska, D., & Franus, W. (2017). Application of mineral sorbents for removal of petroleum substances: A review. Minerals, 7(3), 37. https://doi.org/10.3390/min7030037
  • Bayık, G. D., & Altın, A. (2018). Conversion of an industrial waste to an oil sorbent by coupling with functional silanes. Journal of Cleaner Production, 196, 1052–1064. https://doi.org/10.1016/j.jclepro.2018.06.076
  • Cao, S., Dong, T., Xu, G., & Wang, F. (2016). Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption. Environmental Technology, 37(24), 3193–3199. https://doi.org/10.1080/09593330.2016.1181111
  • Chen, C., Du, Z., Yu, W., & Dias, T. (2018). Analysis of physical properties and structure design of weft-knitted spacer fabric with high porosity. Textile Research Journal, 88(1), 59–68. https://doi.org/10.1177/0040517516676060
  • Chen, L. J., Chen, M., Di Zhou, H., & Chen, J. M. (2008). Preparation of super-hydrophobic surface on stainless steel. Applied Surface Science, 255(5), 3459–3462. https://doi.org/10.1016/j.apsusc.2008.07.122
  • Cheng, Y., Wu, B., Ma, X., Lu, S., Xu, W., Szunerits, S., & Boukherroub, R. (2018). Facile preparation of high density polyethylene superhydrophobic/superoleophilic coatings on glass, copper and polyurethane sponge for self-cleaning, corrosion resistance and efficient oil/water separation. Journal of Colloid and Interface Science, 525, 76–85.
  • Choi, H. M. (1996). Needlepunched cotton nonwovens and other natural fibers as oil cleanup sorbents. Journal of Environmental Science & Health Part A, 31(6), 1441–1457.
  • Choi, S.-J., Kwon, T.-H., Im, H., Moon, D.-I., Baek, D. J., Seol, M.-L., Duarte, J. P., & Choi, Y.-K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Applied Materials & Interfaces, 3(12), 4552–4556. https://doi.org/10.1021/am201352w
  • Sert Çok, S., Koç, F., & Gi Zli, N. (2021). Lightweight and highly hydrophobic silica aerogels dried in ambient pressure for an efficient oil/organic solvent adsorption. Journal of Hazardous Materials, 408, 124858.
  • Davies, A., & Williams, J. (2009). The use of spacer fabrics for absorbent medical applications. J Fiber Bioeng Inform, 1(4), 321–330.
  • Dong, T., Xu, G., & Wang, F. (2015). Adsorption and adhesiveness of kapok fiber to different oils. Journal of Hazardous Materials, 296, 101–111.
  • Durgadevi, N., & Swarnalatha, V. (2017). Polythiophene functionalized hydrophobic cellulose kitchen wipe sponge and cellulose fabric for effective oil–water separation. RSC Advances, 7(55), 34866–34874. https://doi.org/10.1039/C7RA05578A
  • Fang, P., Mao, P., Chen, J., Du, Y., & Hou, X. (2014). Synthesis and properties of a ternary polyacrylate copolymer resin for the absorption of oil spills. Journal of Applied Polymer Science, 131(8), n/a–n/a. https://doi.org/10.1002/app.40180
  • Gurav, A. B., Latthe, S. S., Kappenstein, C., Mukherjee, S., Rao, A. V., & Vhatkar, R. S. (2011). Porous water repellent silica coatings on glass by sol–gel method. Journal of Porous Materials, 18(3), 361–367. https://doi.org/10.1007/s10934-010-9386-0
  • Gurav, J. L., Rao, A. V., Nadargi, D., & Park, H.-H. (2010). Ambient pressure dried TEOS-based silica aerogels: Good absorbents of organic liquids. Journal of Materials Science, 45(2), 503–510. https://doi.org/10.1007/s10853-009-3968-8
  • He, J., Zhao, H., Li, X., Su, D., Zhang, F., Ji, H., & Liu, R. (2018). Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. Journal of Hazardous Materials, 346, 199–207.
  • Hoefnagels, H., Wu, D., De With, G., & Ming, W. (2007). Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir : The ACS Journal of Surfaces and Colloids, 23(26), 13158–13163.
  • Husseien, M., Amer, A., El-Maghraby, A., & Taha, N. A. (2008). Experimental investigation of thermal modification influence on sorption qualities of barley straw. J. Appl. Sci. Res, 4(6), 652–657.
  • Ifelebuegu, A. O., Lale, E. E., Mbanaso, F. U., & Theophilus, S. C. (2018). Facile fabrication of recyclable, superhydrophobic, and oleophilic sorbent from waste cigarette filters for the sequestration of oil pollutants from an aqueous environment. Processes, 6(9), 140. https://doi.org/10.3390/pr6090140
  • Islam, S. R., Alassod, A., Naveed, T., Dawit, H., Ahmed, K., & Jiang, J. (2022). The study of hydrophobicity and oleophilicity of 3D weft-knitted spacer fabrics integrated with silica aerogels. Journal of Industrial Textiles, 51(5_suppl), 8804S–8825S. https://doi.org/10.1177/15280837211029048
  • Islam, S. R., Patoary, M. K., Farooq, A., Naveed, T., Ahmed, K., Shao, H., & Jiang, J. (2022). 3D Weft-knitted spacer fabrics (WKSFs) coated with silica aerogels as oil intercepting sorbents for use in static and dynamic water tests. Industrial Crops and Products, 186, 115169. https://doi.org/10.1016/j.indcrop.2022.115169
  • Islam, S. R., & Rakib, M. A. N. (2019). Mechanical Properties of Weft-Knitted Spacer Fabrics Integrated with Silica Aerogels. Journal of Donghua University (English Edition), 36(6), 559-563.
  • Islam, S. R., Yu, W., & Naveed, T. (2019). Influence of silica aerogels on fabric structural feature for thermal isolation properties of weft-knitted spacer fabrics. Journal of Engineered Fibers and Fabrics, 14, 155892501986644. https://doi.org/10.1177/1558925019866446
  • Latthe, S. S., Imai, H., Ganesan, V., & Rao, A. V. (2009). Superhydrophobic silica films by sol–gel co-precursor method. Applied Surface Science, 256(1), 217–222. https://doi.org/10.1016/j.apsusc.2009.07.113
  • Li, F., Xing, Y., & Ding, X. (2008). Silica xerogel coating on the surface of natural and synthetic fabrics. Surface and Coatings Technology, 202(19), 4721–4727. https://doi.org/10.1016/j.surfcoat.2008.04.048
  • Li, Z., Xing, Y., & Dai, J. (2008). Superhydrophobic surfaces prepared from water glass and non-fluorinated alkylsilane on cotton substrates. Applied Surface Science, 254(7), 2131–2135. https://doi.org/10.1016/j.apsusc.2007.08.083
  • Liu, Y., & Hu, H. (2011). Compression property and air permeability of weft‐knitted spacer fabrics. Journal of the Textile Institute, 102(4), 366–372. https://doi.org/10.1080/00405001003771200
  • Mysore, D., Viraraghavan, T., & Jin, Y.-C. (2005). Treatment of oily waters using vermiculite. Water Research, 39(12), 2643–2653.
  • Padmanabhan, S. K., Protopapa, C., & Licciulli, A. (2021). Stiff and tough hydrophobic cellulose-silica aerogels from bacterial cellulose and fumed silica. Process Biochemistry, 103, 31–38. https://doi.org/10.1016/j.procbio.2021.02.010
  • Pal, S., Mondal, S., & Maity, J. (2018). Synthesis, characterization and photocatalytic properties of ZnO nanoparticles and cotton fabric modified with ZnO nanoparticles via in-situ hydrothermal coating technique: Dual response. Materials Technology, 33(14), 884–891. https://doi.org/10.1080/10667857.2018.1521592
  • Radetić, M. M., Jocić, D. M., Iovantić, P. M., Petrović, Z. L. J., & Thomas, H. F. (2003). Recycled wool-based nonwoven material as an oil sorbent. )Environmental Science & Technology, 37(5), 1008–1012. https://doi.org/10.1021/es0201303
  • Rengasamy, R., Das, D., & Karan, C. P. (2011). Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. Journal of Hazardous Materials, 186(1), 526–532. https://doi.org/10.1016/j.jhazmat.2010.11.031
  • Renuka, S., Rengasamy, R., & Das, D. (2016). Studies on needle-punched natural and polypropylene fiber nonwovens as oil sorbents. Journal of Industrial Textiles, 46(4), 1121–1143. https://doi.org/10.1177/1528083715613630
  • Talukdar, M., Behera, S. K., Bhattacharya, K., & Deb, P. (2019). Surface modified mesoporous g-C3N4@ FeNi3 as prompt and proficient magnetic adsorbent for crude oil recovery. Applied Surface Science, 473, 275–281. https://doi.org/10.1016/j.apsusc.2018.12.166
  • Tsai, C.-K., Liao, C.-Y., Wang, H. P., Chien, Y.-C., & Jou, C.-J G. (2008). Pyrolysis of spill oils adsorbed on zeolites with product oils recycling. Marine Pollution Bulletin, 57(6-12), 895–898.
  • Varnaitė-Žuravliova, S., Sankauskaitė, A., Stygienė, L., Krauledas, S., Bekampienė, P., & Milčienė, I. (2016). The investigation of barrier and comfort properties of multifunctional coated conductive knitted fabrics. Journal of Industrial Textiles, 45(4), 585–610. https://doi.org/10.1177/1528083714564637
  • Yang, Y., & Hu, H. (2017). Spacer fabric-based exuding wound dressing–Part I: Structural design, fabrication and property evaluation of spacer fabrics. Textile Research Journal, 87(12), 1469–1480. https://doi.org/10.1177/0040517516654111
  • Yu, X., Xiong, Y., Li, Z., & Tang, H. (2020). Preparation and Characterization of Tris (trimethylsiloxy) silyl Modified Polyurethane Acrylates and Their Application in Textile Treatment. Polymers, 12(8), 1629. https://doi.org/10.3390/polym12081629
  • Yu, Y., Wu, X., Guo, D., & Fang, J. (2014). Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor. Journal of Materials Science, 49(22), 7715–7722. https://doi.org/10.1007/s10853-014-8480-0
  • Zhang, M., Wang, S., Wang, C., & Li, J. (2012). A facile method to fabricate superhydrophobic cotton fabrics. Applied Surface Science, 261, 561–566. https://doi.org/10.1016/j.apsusc.2012.08.055
  • Zheng, H., Shan, H., Bai, Y., Wang, X., Liu, L., Yu, J., & Ding, B. (2015). Assembly of silica aerogels within silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane. RSC Advances, 5(111), 91813–91820. https://doi.org/10.1039/C5RA18137B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.