208
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An experimental study on the effects of introducing carbon nanotube on low velocity impact behavior of carbon/aramid fiber reinforced intra-ply hybrid composites

ORCID Icon &
Pages 1167-1176 | Received 23 Nov 2021, Accepted 08 Aug 2022, Published online: 22 Aug 2022

References

  • Aslan, Z., Karakuzu, R., & Okutan, B. (2003). The response of laminated composite plates under low- velocity impact loading. Composite Structures, 59(1), 119–127. https://doi.org/10.1016/S0263-8223(02)00185-X
  • Atas, C., & Sayman, O. (2008). An overall view on impact response of woven fabric composite plates. Composite Structure, 82(3), 336–345. https://doi.org/10.1016/j.compstruct.2007.01.014
  • Atas, C., Akgun, Y., Dagdelen, O., Icten, B. M., & Sarikanat, M. (2011). An experimental investigation on the of composite plates repaired by VARIM and hand lay-up processes. Composite Structure, 93(3), 1178–1186. https://doi.org/10.1016/j.compstruct.2010.10.002
  • Azimpour Shishevan, F., & Akbulut, H. (2019). Low-Velocity Impact Behavior of Carbon/Basalt Fiber-Reinforced Intra-ply Hybrid Composites. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(S1), 225–234. https://doi.org/10.1007/s40997-018-0151-3
  • Bao, J. W., Wang, Y. W., An, R., Cheng, H. W., & Wang, F. C. (2021). Investigation of the mechanical and ballistic properties of hybrid carbon/aramid woven laminates. Defense Technology. Corrected Proof.
  • Baskaran, D., Mays, J. W., & Bratcher, M. S. (2005). Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chemistry of Materials, 17(13), 3389–3397. https://doi.org/10.1021/cm047866e
  • Chapple, R., Chivas-Joly, C., Kose, O., Erskine, E. L., Ferry, L., Lopez-Cuesta, J. M., Kandola, B. K., & Forest, V. (2022). Graphene oxide incorporating carbon fiber-reinforced composites submitted to simultaneous impact and fire: Physicochemical characterization and toxicology of the by-products. Journal of Hazardous Materials, 424(Pt B), 127544. https://doi.org/10.1016/j.jhazmat.2021.127544
  • Cheon, J., & Kim, M. (2021). Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber. Composites Part B: Engineering, 217, 108872. https://doi.org/10.1016/j.compositesb.2021.108872
  • Dong, C. (2020). Flexural properties of symmetric carbon and glass fibre reinforced hybrid composite laminates. Composites Part C, 3, 100047. https://doi.org/10.1016/j.jcomc.2020.100047
  • Enew, A. M., Elfattah, M. A., Fouda, S. R., & Hawash, S. A. (2021). Effect of aramid and carbon fibers with nano carbon particles on the mechanical properties of EPDM rubber thermal insulators for solid rocket motors application. Polymer Testing, 103, 107341. https://doi.org/10.1016/j.polymertesting.2021.107341
  • Feng, P., Song, G., Zhu, X., Lv, D., Zhao, Y., Yang, X., Li, N., Zhang, L., & Ma, L. (2021). Enhanced interfacial adhesion of carbon fiber/epoxy composites by synergistic reinforcement with multiscale “rigid-flexible” structure at interphase. Composites Part B: Engineering, 225, 109315. https://doi.org/10.1016/j.compositesb.2021.109315
  • Hajikazemi, M., McCartney, L. N., & Paepegem, W. V. (2020). Matrix cracking initiation, propagation and laminate failure in multiple plies of general symmetric composite laminates. Composites Part A: Applied Science and Manufacturing, 136, 105963. https://doi.org/10.1016/j.compositesa.2020.105963
  • Ji, T., Zhang, S., He, Y., Zhang, X., Zhang, X., & Li, W. (2021). Enhanced thermoelectric property of cement-based materials with the synthesized MnO2/carbon fiber composite. Journal of Building Engineering, 43, 103190. https://doi.org/10.1016/j.jobe.2021.103190
  • Li, Y., Sun, F., & Li, H. (2011). Helical wrapping and insertion of graphene nanoribbon to single-walled carbon nanotube. The Journal of Physical Chemistry C, 115(38), 18459–18467. https://doi.org/10.1021/jp205210x
  • Monticeli, F. M., Cioffi, M. O. H., & Voorwald, H. J. C. (2022). Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading. International Journal of Fatigue, 154, 106574. https://doi.org/10.1016/j.ijfatigue.2021.106574
  • Murthy, B. R. N., Beedu, R., Bhat, R., Naik, N., & Prabakar, P. (2020). Delamination assessment in drilling basalt/carbon fiber reinforced epoxy composite material. Journal of Materials Research and Technology, 9(4), 7427–7433. https://doi.org/10.1016/j.jmrt.2020.05.001
  • Ouyang, T., Sun, W., Bao, R., & Tan, R. (2021). Effects of matrix cracks on delamination of composite laminates subjected to low-velocity impact. Composite Structures, 262, 113354. https://doi.org/10.1016/j.compstruct.2020.113354
  • Pramanik, S., Barua, N., Buragohain, A. K., Hazarika, J., Kumar, A., & Karak, N. (2013). Biofunctionalized multiwalled carbon nanotube: A reactive component for the in situ polymerization of hyperbranched poly (ester amide) and its biophysico interfacial properties. The Journal of Physical Chemistry C, 117(47), 25097–25107. https://doi.org/10.1021/jp407944j
  • Ravindran, A. R., Ladani, R. B., Kinloch, A. J., Wang, C. H., & Mouritz, A. P. (2021). Improving the delamination resistance and impact damage tolerance of carbon fibre-epoxy composites using multi-scale fibre toughening. Composites Part A: Applied Science and Manufacturing, 150, 106624. https://doi.org/10.1016/j.compositesa.2021.106624
  • Sharma, S., Rawal, J., Dhakate, S. R., & Singh, B. P. (2020). Synergistic bridging effects of graphene oxide and carbon nanotube on mechanical properties of aramid fiber reinforced polycarbonate composite tape. Composites Science and Technology, 199, 108370. https://doi.org/10.1016/j.compscitech.2020.108370
  • Soutis, C., & Curtis, P. T. (1996). Prediction of the post-impact compressive strength of CFRP laminated composites. Composites Science and Technology, 56(6), 677–684. https://doi.org/10.1016/0266-3538(96)00050-4
  • Subadra, S. P., Griskevicius, P., & Yousef, S. (2020). Low velocity impact and pseudo-ductile behavior of carbon/glass/epoxy and carbon/glass/PMMA hybrid composite laminates for aircraft application at service temperature. Polymer Testing, 89, 106711. https://doi.org/10.1016/j.polymertesting.2020.106711
  • Suresha, B., Indushekhara, N. M., Varun, C. A., Sachin, D., & Pranao, K. (2021). Effect of carbon nanotubes reinforcement on mechanical properties of aramid/epoxy hybrid composites. Materials Today: Proceedings, 43, 1478–1484. https://doi.org/10.1016/j.matpr.2020.09.307
  • Tan, W., Jiang, X., Shao, Z., Sun, H., Fang, Y., & Shu, R. (2022). Fabrication and mechanical properties of nano-carbon reinforced laminated Cu matrix composites. Powder Technology, 395, 377–390. https://doi.org/10.1016/j.powtec.2021.09.072
  • Velu, S., Joseph, J. K., Sivakumar, M., Bupesh Raja, V. K., Palanikumar, K., & Lenin, N. (2021). Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites. Materials Today: Proceedings, 46, 3566–3571. https://doi.org/10.1016/j.matpr.2021.01.333
  • Wang, A., Wang, X., & Xian, G. (2020). Mechanical, low-velocity impact, and hydrothermal aging properties of flax/carbon hybrid composite plates. Polymer Testing, 90, 106759. https://doi.org/10.1016/j.polymertesting.2020.106759
  • Wang, C., Roy, A., Chen, Z., & Silberschmidt, V. V. (2017). Braided textile composites for sports protection: Energy absorption and delamination in impact modelling. Material Design, 136, 258–269. https://doi.org/10.1016/j.matdes.2017.10.006
  • Wang, C., Su, D., Xie, Z., Zhang, K., Wu, N., Han, M., & Zhou, M. (2021). Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibers. Polymer Testing, 101, 107314. https://doi.org/10.1016/j.polymertesting.2021.107314
  • Wang, C., Wang, H., Shankar, K., Morozov, E. V., & Hazell, P. J. (2021). On the mechanical behavior of steel wire mesh subjected to low-velocity impact. Thin-Walled Structures, 159, 107281. https://doi.org/10.1016/j.tws.2020.107281
  • Wu, Q., Yang, X., He, J., Ye, Z., Liu, Q., Bai, H., & Zhu, J. (2022). Improved interfacial adhesion of epoxy composites by grafting porous graphene oxide on carbon fiber. Applied Surface Science, 573, 151605. https://doi.org/10.1016/j.apsusc.2021.151605
  • Yang, C., Zhu, D., Sun, C., Chen, B., Li, Y., Pulidindi, IN., Zheng, Z., & Wang, X. (2021). Electrothermally responsive self-healing for carbon fiber/epoxy interphase based on Diels-Alder adducts. Composites Science and Technology, 208, 108767. https://doi.org/10.1016/j.compscitech.2021.108767
  • Zhang, R., Zhang, X., Kang, J., Kang, T., & Zhang, B. (2021). A discrimination model for crack propagation behavior at the interface of layered composite structures considering loading rate effect. Theoretical and Applied Fracture Mechanics, 114, 103037. https://doi.org/10.1016/j.tafmec.2021.103037
  • Zhang, Z., Fu, K., & Li, Y. (2021). Improved interlaminar fracture toughness of carbon fiber/epoxy composites with a multiscale cellulose fiber interlayer. Composites Communications, 27, 100898. https://doi.org/10.1016/j.coco.2021.100898
  • Zhou, Y., Xiao, Y., Wu, Q., & Xue, Y. (2021). A multi-state progressive cohesive law for the prediction of unstable propagation and arrest of Mode-I delamination cracks in composite laminates. Engineering Fracture Mechanics, 248, 107684. https://doi.org/10.1016/j.engfracmech.2021.107684

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.